算法笔记图结构及图的 DFS 和 BFS 介绍

Posted 吞吞吐吐大魔王

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法笔记图结构及图的 DFS 和 BFS 介绍相关的知识,希望对你有一定的参考价值。

前言: 该篇文章将介绍如何应付面试中的图结构,并且还简单介绍了 BFS 和 DFS

文章目录

1. 图的基本介绍

基本概念:

  • 图由点的集合和边的集合构成
  • 虽然存在有向图和无向图的概念,但实际上都可以用有向图来表达
  • 边上可能带有权值

图的结构:

  • 邻接表法
  • 邻接矩阵法
  • 还有其它众多的方式

如何搞定图的面试题: 图的算法都不难,但是写代码时会很复杂,coding 代价比较高,因此可以通过以下的方式来应付图的面试题

  • 先用自己最熟练的方式,实现图结构的表达
  • 在自己熟悉的结构上,实现所有常用图的算法作为模板
  • 把面试题提供的图结构转化为自己熟悉的图结构,再调用模板或改写即可(做一个适配器)

2. 图的实现

实现代码:

  • 点结构的实现

    import java.util.ArrayList;
    
    // 点结构的描述
    public class Node 
    	// 该点的值
    	public int value;
    	// 该点的入度数
    	public int in;
    	// 该点的出度数
    	public int out;
    	// 该点的相邻点(指该点指向的点)
    	public ArrayList<Node> nexts;
    	// 该点的相邻边(指该点指向的边)
    	public ArrayList<Node> edges;
    
    	public Node(int value) 
    		this.value = value;
    		in = 0;
    		out = 0;
    		nexts = new ArrayList<>();
    		edges = new ArrayList<>();
    	
    
    
  • 边结构的实现

    // 边结构的描述
    public class Edge 
    	// 边的权重
    	public int weight;
    	// 入边节点
    	public Node from;
    	// 出边节点
    	public Node to;
    
    	public Edge(int weight, Node from, Node to) 
    		this.weight = weight;
    		this.from = from;
    		this.to = to;
    	
    
    
  • 图结构的实现

    import java.util.HashMap;
    import java.util.HashSet;
    
    // 图的描述
    public class Graph 
    	// 点的集合,Integer 表示节点的值,先有值,再创建节点
    	public HashMap<Integer, Node> nodes;
    	// 边的集合
    	public HashSet<Edge> edges;
    
    	public Graph() 
    		nodes = new HashMap<>();
    		edges = new HashSet<>();
    	
    
    

常见面试题的图结构:

  • 用一个二维数组表示,每个一维数组里面有三个值
  • 第一个值表示边的权重
  • 第二个值表示边的出发节点
  • 第三个值表示边的目的节点

假设现有一个数组表示是这样的:3, 0, 7, 5, 1, 2, 6, 2, 7,它符合上面图的结构,那么它用图表示如下

当我们面试遇见这种结构的图时,就可以使用我们上述已经定义好的图的结构来表示,因此我们只需要再做一个适配的过程

适配代码:

public class Create 
	
	public static Graph createGraph(int[][] matrix) 
		Graph graph=new Graph();
		for(int i=0;i<matrix.length;i++) 
			// 边的权重
			int weight=matrix[i][0];
			// 出发节点的值
			int from=matrix[i][1];
			// 目的节点的值
			int to=matrix[i][2];
			// 如果该图中还没有包含该节点,则将节点入图
			if(!graph.nodes.containsKey(from)) 
				graph.nodes.put(from, new Node(from));
			
			if(!graph.nodes.containsKey(to)) 
				graph.nodes.put(to, new Node(to));
			
			Node fromNode=graph.nodes.get(from);
			Node toNode=graph.nodes.get(to);
			Edge edge=new Edge(weight,fromNode,toNode);
			fromNode.out++;
			toNode.in++;
			fromNode.nexts.add(toNode);
			fromNode.edges.add(edge);
			graph.edges.add(edge);
		
		return graph;
	

3. BFS

BFS 方式:

从图中弹出最高层的节点,用一个集合 Set 注册该节点,然后将该节点入队列。当我们从队列中将它弹出时,将它的相邻节点(指向的节点)进行入队列,但是首先需要判断相邻节点是否在集合中注册,如果注册了,就不做处理;如果未注册,就进行注册,并将该节点进行入队列。然后重复刚刚的操作,对每层进行遍历

方法模板:

import java.util.HashSet;
import java.util.LinkedList;
import java.util.Queue;

public class BFS 
	// BFS 需要有一个头节点
	public static void bfs(Node start) 
		if (start == null) 
			return;
		
		Queue<Node> queue = new LinkedList<>();
		HashSet<Node> set = new HashSet<>();
		queue.add(start);
		set.add(start);
		while (!queue.isEmpty()) 
			Node node = queue.poll();
			System.out.println(node.value);
			for (Node cur : node.nexts) 
				if (!set.contains(cur)) 
					set.add(cur);
					queue.add(cur);
				
			
		
	

4. DFS

DFS 方式:

一条路走到底为止,但是不能形成环路,当到底为止后,就返回上一个节点,如果该节点没有其它路,就继续往上。当某个节点还有其它路,先判断新的节点是否已经打印果过,打印过就继续往上,直到找到新的节点且未打印过。当最终返回头节点,则深度遍历结束。其中使用集合 Set 来标记该节点是否走过或打印过,使用来存储当前遍历路线的节点

方法模板:

import java.util.HashSet;
import java.util.Stack;

public class DFS 

	public static void dfs(Node node) 
		if (node == null) 
			return;
		
		Stack<Node> stack = new Stack<>();
		HashSet<Node> set = new HashSet<>();
		stack.add(node);
		set.add(node);
		// 在入栈时就进行打印
		System.out.println(node.value);
		while (!stack.isEmpty()) 
			Node cur = stack.pop();
			for (Node next : cur.nexts) 
				if (!set.contains(next)) 
					stack.add(cur);
					stack.add(next);
					set.add(next);
					System.out.println(next.value);
					break;
				
			
		
	

以上是关于算法笔记图结构及图的 DFS 和 BFS 介绍的主要内容,如果未能解决你的问题,请参考以下文章

学习笔记:图的DFS和BFS的两种搜索办法

算法学习笔记 二叉树和图遍历—深搜 DFS 与广搜 BFS

图的基本算法(BFS和DFS)

算法笔记:树堆和图

数据结构C语言版 图的遍历 DFS和BFS算法,用邻接矩阵储存 急阿在线等 求大神指点

(王道408考研数据结构)第六章图-第三节:图的遍历(DFS和BFS)