Python读取csv文件做dbscan分析
Posted 空中旋转篮球
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python读取csv文件做dbscan分析相关的知识,希望对你有一定的参考价值。
1.读取csv数据做dbscan分析
读取csv文件中相应的列,然后进行转化,处理为本算法需要的格式,然后进行dbscan运算,目前公开的代码也比较多,本文根据公开代码修改,具体代码如下:
from sklearn import datasets
import numpy as np
import random
import matplotlib.pyplot as plt
import time
import copy
import pandas as pd
# from sklearn.datasets import load_iris
def find_neighbor(j, x, eps):
N = list()
for i in range(x.shape[0]):
temp = np.sqrt(np.sum(np.square(x[j] - x[i]))) # 计算欧式距离
if temp <= eps:
N.append(i)
return set(N)
def DBSCAN(X, eps, min_Pts):
k = -1
neighbor_list = [] # 用来保存每个数据的邻域
omega_list = [] # 核心对象集合
gama = set([x for x in range(len(X))]) # 初始时将所有点标记为未访问
cluster = [-1 for _ in range(len(X))] # 聚类
for i in range(len(X)):
neighbor_list.append(find_neighbor(i, X, eps))
if len(neighbor_list[-1]) >= min_Pts:
omega_list.append(i) # 将样本加入核心对象集合
omega_list = set(omega_list) # 转化为集合便于操作
while len(omega_list) > 0:
gama_old = copy.deepcopy(gama)
j = random.choice(list(omega_list)) # 随机选取一个核心对象
k = k + 1
Q = list()
Q.append(j)
gama.remove(j)
while len(Q) > 0:
q = Q[0]
Q.remove(q)
if len(neighbor_list[q]) >= min_Pts:
delta = neighbor_list[q] & gama
deltalist = list(delta)
for i in range(len(delta)):
Q.append(deltalist[i])
gama = gama - delta
Ck = gama_old - gama
Cklist = list(Ck)
for i in range(len(Ck)):
cluster[Cklist[i]] = k
omega_list = omega_list - Ck
return cluster
# X = load_iris().data
data = pd.read_csv("testdata.csv")
x,y=data['Time (sec)'],data['Height (m HAE)']
print(type(x))
n=len(x)
x=np.array(x)
x=x.reshape(n,1)
y=np.array(y)
y=y.reshape(n,1)
X = np.hstack((x, y))
cluster_std=[[.1]], random_state=9)
eps = 0.08
min_Pts = 5
begin = time.time()
C = DBSCAN(X, eps, min_Pts)
end = time.time()
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=C)
plt.show()
2.输出结果显示
修改参数显示: eps = 0.8 min_Pts = 5
3.计算效率
采用少量数据计算的时候效率问题不明显,随着数据量增大,计算效率问题就变得尤为明显,难以满足大量数据的计算需求了,后期将想办法优化计算方法或者收集C++代码进行优化了。
以上是关于Python读取csv文件做dbscan分析的主要内容,如果未能解决你的问题,请参考以下文章