值得收藏Pandas 三大利器:mapapplyapplymap

Posted Python学习与数据挖掘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了值得收藏Pandas 三大利器:mapapplyapplymap相关的知识,希望对你有一定的参考价值。

实际工作中,我们在利用 pandas进行数据处理的时候,经常会对数据框中的单行、多行(列也适用)甚至是整个数据进行某种相同方式的处理,比如将数据中的 sex字段将 男替换成1,女替换成0

在这个时候,很容易想到的是 for循环。用 for循环是一种很简单、直接的方式,但是运行效率很低。本文中介绍了 pandas中的三大利器: map、apply、applymap 来解决上述同样的需求。

  • map

  • apply

  • applymap

推荐文章

模拟数据

通过一个模拟的数据来说明3个函数的使用,在这个例子中学会了如何生成各种模拟数据。数据如下:

import pandas as pd
import numpy as np

boolean = [True, False]
gender = ["男","女"]
color = ["white","black","red"]

# 好好学习如何生成模拟数据:非常棒的例子
# 学会使用random模块中的randint方法

df = pd.DataFrame("height":np.random.randint(160,190,100),
                     "weight":np.random.randint(60,90,100),
                     "smoker":[boolean[x] for x in np.random.randint(0,2,100)],
                     "gender":[gender[x] for x in np.random.randint(0,2,100)],
                     "age":np.random.randint(20,60,100),
                     "color":[color[x] for x in np.random.randint(0,len(color),100)]
                    )
df.head()

1、map

demo

map() 会根据提供的函数对指定序列做映射。

第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表

map(function, iterable)

实际数据

将gender中男变成1,女变成0

# 方式1:通过字典映射实现
dic = "男":1, "女":0  # 通过字典映射
df1 = df.copy()   # 副本,不破坏原来的数据df
df1["gender"] = df1["gender"].map(dic)
df1

# 方式2:通过函数实现
def map_gender(x):
    gender = 1 if x == "男" else 0
    return gender

df2 = df.copy()
# 将df["gender"]这个S型数据中的每个数值传进去
df2["gender"] = df2["gender"].map(map_gender)
df2

2、apply

apply方法的作用原理和 map方法类似,区别在于 apply能够传入功能更为复杂的函数,可以说 applymap的高级版

pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。

DataFrame对象的大多数方法中,都会有 axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。 axis=0代表操作对 列columns进行, axis=1代表操作对 行row进行

demo

  1. 上面的数据中将age字段的值都减去3,即加上-3
def apply_age(x,bias):
    return x + bias

df4 = df.copy()
# df4["age"]当做第一个值传给apply_age函数,args是第二个参数
df4["age"] = df4["age"].apply(apply_age,args=(-3,))

  1. 计算BMI指数
# 实现计算BMI指数:体重/身高的平方(kg/m^2)
def BMI(x):
    weight = x["weight"]
    height = x["height"] / 100
    BMI = weight / (height **2)

    return BMI

df5 = df.copy()
df5["BMI"] = df5.apply(BMI,axis=1)  # df5现在就相当于BMI函数中的参数x;axis=1表示在列上操作
df5

DataFrame型数据的 apply操作总结:

  1. axis=0时,对 每列columns执行指定函数;当 axis=1时,对 每行row执行指定函数。

  2. 无论 axis=0还是 axis=1,其传入指定函数的默认形式均为 Series,可以通过设置 raw=True传入 numpy数组

  3. 对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要 return相应的值)

apply实现需求

通过apply方法实现上面的性别转换需求。apply方法中传进来的第一个参数一定是函数

3、applymap

DF数据加1

applymap函数用于对DF型数据中的每个元素执行相同的函数操作,比如下面的加1:

保留2位有效数字

技术交流

欢迎转载、收藏、有所收获点赞支持一下!

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

以上是关于值得收藏Pandas 三大利器:mapapplyapplymap的主要内容,如果未能解决你的问题,请参考以下文章

❤️两万字,50个pandas高频操作图文并茂,值得收藏❤️

科普三大数据库运维脚本合集(建议收藏)

面试利器 原生JS灵魂拷问,你能答上多少(建议收藏)

springboot整合Hutool实现Convert类型转换实用案例-值得收藏

值得收藏的45个Python优质资源(附链接)

值得收藏,这是 Python 数据预处理最频繁使用的5个技巧