Python 中少为人知的 10 个安全陷阱

Posted AI科技大本营

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 中少为人知的 10 个安全陷阱相关的知识,希望对你有一定的参考价值。

作者:Dennis Brinkrolf

译者:豌豆花下猫@Python猫

原题:10 Unknown Security Pitfalls for Python

英文:https://blog.sonarsource.com/10-unknown-security-pitfalls-for-python

Python 开发者们在使用标准库和通用框架时,都以为自己的程序具有可靠的安全性。然而,在 Python 中,就像在任何其它编程语言中一样,有一些特性可能会被开发者们误解或误用。通常而言,只有极少的微妙之处或细节会使开发者们疏忽大意,从而在代码中引入严重的安全漏洞。

在这篇博文中,我们将分享在实际 Python 项目中遇到的 10 个安全陷阱。我们选择了一些在技术圈中不太为人所知的陷阱。通过介绍每个问题及其造成的影响,我们希望提高人们对这些问题的感知,并提高大家的安全意识。如果你正在使用这些特性,请一定要排查你的 Python 代码!

1.被优化掉的断言

Python 支持以优化的方式执行代码。这使代码运行得更快,内存用得更少。当程序被大规模使用,或者可用的资源很少时,这种方法尤其有效。一些预打包的 Python 程序提供了优化的字节码。

然而,当代码被优化时,所有的 assert 语句都会被忽略。开发者有时会使用它们来判断代码中的某些条件。例如,如果使用断言来作身份验证检查,则可能导致安全绕过。

def superuser_action(request, user):
    assert user.is_super_user
    # execute action as super user

在这个例子中,第 2 行中的 assert 语句将被忽略,导致非超级用户也可以运行到下一行代码。不推荐使用 assert 语句进行安全相关的检查,但我们确实在实际的项目中看到过它们。

2. MakeDirs 权限

os.makdirs 函数可以在操作系统中创建一个或多个文件夹。它的第二个参数 mode 用于指定创建的文件夹的默认权限。在下面代码的第 2 行中,文件夹 A/B/C 是用 rwx------ (0o700) 权限创建的。这意味着只有当前用户(所有者)拥有这些文件夹的读、写和执行权限。

def init_directories(request):
    os.makedirs("A/B/C", mode=0o700)
    return HttpResponse("Done!")

在 Python < 3.6 版本中,创建出的文件夹 A、B 和 C 的权限都是 700。但是,在 Python > 3.6 版本中,只有最后一个文件夹 C 的权限为 700,其它文件夹 A 和 B 的权限为默认的 755。

因此,在 Python > 3.6 中,os.makdirs 函数等价于 Linux 的这条命令:mkdir -m 700 -p A/B/C。有些开发者没有意识到版本之间的差异,这已经在 Django 中造成了一个权限越级漏洞(cve - 2022 -24583),无独有偶,这在 WordPress 中也造成了一个加固绕过问题。

3.绝对路径拼接

os.path.join(path, *paths) 函数用于将多个文件路径连接成一个组合的路径。第一个参数通常包含了基础路径,而之后的每个参数都被当做组件拼接到基础路径后。

然而,这个函数有一个少有人知的特性。如果拼接的某个路径以 / 开头,那么包括基础路径在内的所有前缀路径都将被删除,该路径将被视为绝对路径。下面的示例揭示了开发者可能遇到的这个陷阱。

def read_file(request):
    filename = request.POST['filename']
    file_path = os.path.join("var", "lib", filename)
    if file_path.find(".") != -1:
        return HttpResponse("Failed!")
    with open(file_path) as f:
        return HttpResponse(f.read(), content_type='text/plain')

在第 3 行中,我们使用 os.path.join 函数将用户输入的文件名构造出目标路径。在第 4 行中,检查生成的路径是否包含”.“,防止出现路径遍历漏洞。

但是,如果攻击者传入的文件名参数为”/a/b/c.txt“,那么第 3 行得到的变量 file_path 会是一个绝对路径(/a/b/c.txt)。即 os.path.join 会忽略掉”var/lib“部分,攻击者可以不使用“.”字符就读取到任何文件。尽管 os.path.join 的文档中描述了这种行为,但这还是导致了许多漏洞(Cuckoo Sandbox Evasion, CVE-2020-35736)。

4. 任意的临时文件

tempfile.NamedTemporaryFile 函数用于创建具有特定名称的临时文件。但是,prefix(前缀)和 suffix(后缀)参数很容易受到路径遍历攻击(Issue 35278)。如果攻击者控制了这些参数之一,他就可以在文件系统中的任意位置创建出一个临时文件。下面的示例揭示了开发者可能遇到的一个陷阱。

def touch_tmp_file(request):
    id = request.GET['id']
    tmp_file = tempfile.NamedTemporaryFile(prefix=id)
    return HttpResponse(f"tmp file: tmp_file created!", content_type='text/plain')

在第 3 行中,用户输入的 id 被当作临时文件的前缀。如果攻击者传入的 id 参数是“/../var/www/test”,则会创建出这样的临时文件:/var/www/test_zdllj17。粗看起来,这可能是无害的,但它会为攻击者创造出挖掘更复杂的漏洞的基础。

5.扩展的 Zip Slip

在 Web 应用中,通常需要解压上传后的压缩文件。在 Python 中,很多人都知道 TarFile.extractall 与 TarFile.extract 函数容易受到 Zip Slip 攻击。攻击者通过篡改压缩包中的文件名,使其包含路径遍历(../)字符,从而发起攻击。

这就是为什么压缩文件应该始终被视为不受信来源的原因。zipfile.extractall 与 zipfile.extract 函数可以对 zip 内容进行清洗,从而防止这类路径遍历漏洞。

但是,这并不意味着在 ZipFile 库中不会出现路径遍历漏洞。下面是一段解压缩文件的代码。

def extract_html(request):
    filename = request.FILES['filename']
    zf = zipfile.ZipFile(filename.temporary_file_path(), "r")
    for entry in zf.namelist():
        if entry.endswith(".html"):
            file_content = zf.read(entry)
            with open(entry, "wb") as fp:
                fp.write(file_content)
    zf.close()
    return HttpResponse("HTML files extracted!")

第 3 行代码根据用户上传文件的临时路径,创建出一个 ZipFile 处理器。第 4 - 8 行代码将所有以“.html”结尾的压缩项提取出来。第 4 行中的 zf.namelist 函数会取到 zip 内压缩项的名称。注意,只有 zipfile.extract 与 zipfile.extractall 函数会对压缩项进行清洗,其它任何函数都不会。

在这种情况下,攻击者可以创建一个文件名,例如“../../../var/www/html”,内容随意填。该恶意文件的内容会在第 6 行被读取,并在第 7-8 行写入被攻击者控制的路径。因此,攻击者可以在整个服务器上创建任意的 HTML 文件。

如上所述,压缩包中的文件应该被看作是不受信任的。如果你不使用 zipfile.extractall 或者 zipfile.extract,你就必须对 zip 内文件的名称进行“消毒”,例如使用 os.path.basename。否则,它可能导致严重的安全漏洞,就像在 NLTK Downloader (CVE-2019-14751)中发现的那样。

6. 不完整的正则表达式匹配

正则表达式(regex)是大多数 Web 程序不可或缺的一部分。我们经常能看到它被自定义的 Web 应用防火墙(WAF,Web Application Firewalls)用来作输入验证,例如检测恶意字符串。在 Python 中,re.match 和 re.search 之间有着细微的区别,我们将在下面的代码片段中演示。

def is_sql_injection(request):
    pattern = re.compile(r".*(union)|(select).*")
    name_to_test = request.GET['name']
    if re.search(pattern, name_to_test):
        return True
    return False

在第 2 行中,我们定义了一个匹配 union 或者 select 的模式,以检测可能的 SQL 注入。这是一个糟糕的写法,因为你可以轻易地绕过这些黑名单,但我们已经在线上的程序中见过它。在第 4 行中,函数 re.match 使用前面定义好的模式,检查第 3 行中的用户输入内容是否包含这些恶意的值。

然而,与 re.search 函数不同的是,re.match 函数不匹配新行。例如,如果攻击者提交了值 aaaaaa \\n union select,这个输入就匹配不上正则表达式。因此,检查可以被绕过,失去保护作用。

总而言之,我们不建议使用正则表达式黑名单进行任何安全检查。

7. Unicode 清洗器绕过

Unicode 支持用多种形式来表示字符,并将这些字符映射到码点。在 Unicode 标准中,不同的 Unicode 字符有四种归一化方案。程序可以使用这些归一化方法,以独立于人类语言的标准方式来存储数据,例如用户名。

然而,攻击者可以利用这些归一化,这已经导致了 Python 的 urllib 出现漏洞(CVE-2019-9636)。下面的代码片段演示了一个基于 NFKC 归一化的跨站点脚本漏洞(XSS,Cross-Site Scripting)。

import unicodedata
from django.shortcuts import render
from django.utils.html import escape

def render_input(request):
    user_input = escape(request.GET['p'])
    normalized_user_input = unicodedata.normalize("NFKC", user_input)
    context = 'my_input': normalized_user_input
    return render(request, 'test.html', context)

在第 6 行中,用户输入的内容被 Django 的 escape 函数处理了,以防止 XSS 漏洞。在第 7 行中,经过清洗的输入被 NFKC 算法归一化,以便在第 8-9 行中通过 test.html 模板正确地渲染。

templates/test.html

<!DOCTYPE html>
<html lang="en">
<body>
 my_input | safe
</body>
</html>

在模板 test.html 中,第 4 行的变量 my_input 被标记为安全的,因为开发人员预期有特殊字符,并且认为该变量已经被 escape 函数清洗了。通过标记关键字 safe, Django 不会再次对变量进行清洗。

但是,由于第 7 行(view.py)的归一化,字符“%EF%B9%A4”会被转换为“<”,“%EF%B9%A5”被转换为“>”。这导致攻击者可以注入任意的 HTML 标记,进而触发 XSS 漏洞。为了防止这个漏洞,就应该在把用户输入做完归一化之后,再进行清洗。

8. Unicode 编码碰撞

前文说过,Unicode 字符会被映射成码点。然而,有许多不同的人类语言,Unicode 试图将它们统一起来。这就意味着不同的字符很有可能拥有相同的“layout”。例如,小写的土耳其语 ı(没有点)的字符是英语中大写的 I。在拉丁字母中,字符 i 也是用大写的 I 表示。在 Unicode 标准中,这两个不同的字符都以大写形式映射到同一个码点。

这种行为是可以被利用的,实际上已经在 Django 中导致了一个严重的漏洞(CVE-2019-19844)。下面的代码是一个重置密码的示例。

from django.core.mail import send_mail
from django.http import HttpResponse
from vuln.models import User

def reset_pw(request):
    email = request.GET['email']
    result = User.objects.filter(email__exact=email.upper()).first()
    if not result:
        return HttpResponse("User not found!")
    send_mail('Reset Password','Your new pw: 123456.', 'from@example.com', [email], fail_silently=False)
    return HttpResponse("Password reset email send!")

第 6 行代码获取了用户输入的 email,第 7-9 行代码检查这个 email 值,查找是否存在具有该 email 的用户。如果用户存在,则第 10 行代码依据第 6 行中输入的 email 地址,给用户发送邮件。需要指出的是,第 7-9 行中对邮件地址的检查是不区分大小写的,使用了 upper 函数。

至于攻击,我们假设数据库中存在一个邮箱地址为 foo@mix.com 的用户。那么,攻击者可以简单地传入 foo@mıx.com 作为第 6 行中的 email,其中 i 被替换为土耳其语 ı。第 7 行代码将邮箱转换成大写,结果是 FOO@MIX.COM。这意味着找到了一个用户,因此会发送一封重置密码的邮件。

然而,邮件被发送到第 6 行未转换的邮件地址,也就是包含了土耳其语的 ı。换句话说,其他用户的密码被发送到了攻击者控制的邮件地址。为了防止这个漏洞,可以将第 10 行替换成使用数据库中的用户邮箱。即使发生编码冲突,攻击者在这种情况下也得不到任何好处。

9. IP 地址归一化

在 Python < 3.8 中,IP 地址会被 ipaddress 库归一化,因此前缀的零会被删除。这种行为乍一看可能是无害的,但它已经在 Django 中导致了一个高严重性的漏洞(CVE-2021-33571)。攻击者可以利用归一化绕过校验程序,发起服务端请求伪造攻击(SSRF,Server-Side Request Forgery)。

下面的代码展示了如何绕过这样的校验器。

import requests
import ipaddress

def send_request(request):
    ip = request.GET['ip']
    try:
        if ip in ["127.0.0.1", "0.0.0.0"]:
            return HttpResponse("Not allowed!")
        ip = str(ipaddress.IPv4Address(ip))
    except ipaddress.AddressValueError:
        return HttpResponse("Error at validation!")
    requests.get('https://' + ip)
    return HttpResponse("Request send!")

第 5 行代码获取用户传入的一个 IP 地址,第 7 行代码使用一个黑名单来检查该 IP 是否为本地地址,以防止可能的 SSRF 漏洞。这份黑名单并不完整,仅作为示例。

第 9 行代码检查该 IP 是否为 IPv4 地址,同时将 IP 归一化。在完成验证后,第 12 行代码会对该 IP 发起实际的请求。

但是,攻击者可以传入 127.0.001 这样的 IP 地址,在第 7 行的黑名单列表中找不到。然后,第 9 行代码使用 ipaddress.IPv4Address 将 IP 归一化为 127.0.0.1。因此,攻击者就能够绕过 SSRF 校验器,并向本地网络地址发送请求。

10. URL 查询参数解析

在 Python < 3.7 中,urllib.parse.parse_qsl 函数允许使用“;”和“&”字符作为 URL 的查询变量的分隔符。有趣的是“;”字符不能被其它语言识别为分隔符。

在下面的例子中,我们将展示为什么这种行为会导致漏洞。假设我们正在运行一个基础设施,其中前端是一个 php 程序,后端则是一个 Python 程序。

攻击者向 PHP 前端发送以下的 GET 请求:

GET https://victim.com/?a=1;b=2

PHP 前端只识别出一个查询参数“a”,其内容为“1;b=2”。PHP 不把“;”字符作为查询参数的分隔符。现在,前端会将攻击者的请求直接转发给内部的 Python 程序:

GET https://internal.backend/?a=1;b=2

如果使用了 urllib.parse.parse_qsl,Python 程序会处理成两个查询参数,即“a=1”和“b=2”。这种查询参数解析的差异可能会导致致命的安全漏洞,比如 Django 中的 Web 缓存投毒漏洞(CVE-2021-23336)。

总结

在这篇博文中,我们介绍了 10 个 Python 安全陷阱,我们认为开发者不太了解它们。每个细微的陷阱都很容易被忽视,并在过去导致了线上程序的安全漏洞。

正如前文所述,安全陷阱可能出现在各种操作中,从处理文件、目录、压缩文件、URL、IP 到简单的字符串。一种常见的情况是库函数的使用,这些函数可能有意想不到的行为。这提醒我们一定要升级到最新版本,并仔细阅读文档。在 SonarSource 中,我们正在研究这些缺陷,以便将来不断改进我们的代码分析器。

技术

如何使用Python隐藏图像中的数据

资讯

再一次输给AI,弯道急速超车

技术

用Python绘制谷爱凌卡通动漫形象

技术

Python可视化近90天的百度搜索

分享

点收藏

点点赞

点在看

以上是关于Python 中少为人知的 10 个安全陷阱的主要内容,如果未能解决你的问题,请参考以下文章

警惕 Python 中少为人知的 10 个安全陷阱

警惕 Python 中少为人知的 10 个安全陷阱

程序员必知的Python陷阱与缺陷列表

Python程序猿必知的新型字符串格式漏洞

HTML5 中 10 个罕为人知的有用特性

逻辑陷阱型蜜罐合约