ubuntu18.04 cuda8.0 cudnn5 caffe python2.7 install
Posted Sun7_She
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ubuntu18.04 cuda8.0 cudnn5 caffe python2.7 install相关的知识,希望对你有一定的参考价值。
1. prepare
sudo apt install vim
sudo vim /etc/apt/sources.list
ubuntu镜像-ubuntu下载地址-ubuntu安装教程-阿里巴巴开源镜像站
sudo apt-get update
sudo apt-get upgrade
sudo apt install python
2. install opencv
其实opencv只用一句话来装就可以
sudo apt install libopencv-dev
但是下边的过程还是记录一下好了,第2小节之后的内容可以不看,直接跳到第3小节
linux安装opencv和Makefile:160: recipe for target 'all' failed问题解决方案_Yancy的博客-CSDN博客git clone https://github.com/Itseez/opencv.git
git clone https://github.com/Itseez/opencv_contrib.git
将opencv_contrib目录移到opencv目录下
添加需要的依赖库:
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
error1:
E: Unable to locate package libjasper-dev的解决办法(亲测可以解决)_mango-CSDN博
solution1 start:
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
sudo apt install libjasper1 libjasper-dev
solution1 end
cd命令进入opencv
mkdir build
进入build目录,开始编译
cmake -D CMAKE_INSTALL_PREFIX=/usr/local -D CMAKE_BUILD_TYPE=Release -D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib/modules ..
make -j8
sudo make install
cd /usr/local/lib
ls
error2:
solution2 start:
sudo make uninstall
sudo apt install libopencv-dev
solution2 end
3. install cuda8.0+cudnn5
sudo dpkg -i ...
cuda-license-8-0
cuda-misc-headers-8-0
cuda-npp-8-0
cuda-npp-dev-8-0
cuda-nvgraph-8-0
cuda-nvgraph-dev-8-0
cuda-nvml-dev-8-0
cuda-nvrtc-8-0
cuda-nvrtc-dev-8-0
libcudnn5
libcudnn5-dev
cuda-core-8-0
cuda-cublas-8-0
cuda-cublas-dev-8-0
cuda-cudart-8-0
cuda-cufft-8-0
cuda-cufft-dev-8-0
cuda-curand-8-0
cuda-curand-dev-8-0
cuda-cusolver-8-0
cuda-cusolver-dev-8-0
cuda-cusparse-8-0
cuda-cusparse-dev-8-0
cuda-driver-dev-8-0
cuda-cudart-dev-8-0
cuda-command-line-tools-8-0
error 3:
solution3 start:
sudo vim /etc/apt/sources.list
ubuntu镜像-ubuntu下载地址-ubuntu安装教程-阿里巴巴开源镜像站
sudo apt-get update
sudp apt-get upgrade
solution3 end
sudo ubuntu-drivers autoinstall
4. install caffe & test code
sudo apt-get install git
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install python-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
cd /home/ruoqi256/srq/model
git clone https://github.com/Eniac-Xie/faster-rcnn-resnet.git
git clone https://github.com/Eniac-Xie/caffe-fast-rcnn.git
cp -r caffe-fast-rcnn faster-rcnn-resnet
cd faster-rcnn-resnet/caffe-fast-rcnn
mv Makefile.config.example Makefile.config
sudo apt-get install python-setuptools
sudo apt install python-pip
pip install cython
//-----------------------------------------------------------------------------
vim Makefile.config
opencv_vertion := 3
CUDA_DIR := /usr/local/cuda-8.0
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \\
-gencode arch=compute_35,code=sm_35 \\
-gencode arch=compute_50,code=sm_50 \\
-gencode arch=compute_52,code=sm_52 \\
-gencode arch=compute_60,code=sm_60 \\
-gencode arch=compute_61,code=sm_61 \\
-gencode arch=compute_61,code=compute_61
WITH_PYTHON_LAYER := 1
vim Makefile.config
change
CUDA_DIR := /usr/local/cuda-8.0
change
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu
//-----------------------------------------------------------------------------
mkdir build
cd build
sudo apt-get install the python-dev
sudo apt-get install python-scipy
sudo apt-get install python-numpy
sudo apt install cmake
cmake ..
make
make install
~/.bashrc ---->
export PYTHONPATH=~/srq/model/faster-rcnn-resnet/caffe-fast-rcnn/python:$PYTHONPATH
terminal write export PYTHONPATH=~/srq/model/faster-rcnn-resnet/caffe-fast-rcnn/python:$PYTHONPATH
over
error4: nvidia-smi 无法使用
solution4 start:
E: 无法定位软件包:nvidia-470(核显+独显安装ubuntu操作说明)_znevegiveup1的博客-CSDN博客s
solution4 end
error5:
solution5 start:
sudo apt install nvidia-cuda-toolkit
solution5 end
error6:
solution6 start:
change setup.py
'lib64': pjoin(home, 'lib64') -------->'lib64': pjoin(home, 'lib')
solution6 end
error7:
solution7 start:
sudo apt-get install protobuf-compiler
solution7 end
error8
编译caffe出现:src/caffe/net.cpp:9:18: fatal error: hdf5.h: No such file or directory compilation termina
solution8 start:
修改Makefile.config文件中这两行,改成:
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
solution8 end
error9:
solution9 start:
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial /usr/local/cuda-8.0/targets/x86_64-linux/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/local/cuda-8.0/targets/x86_64-linux/lib
solution9 end
error10 :
solution10 start:
Makefile.config
CUDA_DIR := /usr/local/cuda-8.0
solution10 end
error11:
error: #error -- unsupported GNU version! gcc versions later than 5 are not supported!
solution11 start:
Ubuntu 安装 gcc/g++ 5.0_HexRain的专栏-CSDN博客
sudo apt-get install python-software-properties
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-5
sudo apt-get install g++-5
后边这四句有点取巧了,最好还是按照对的方式安装,也可不看
sudo cp /usr/bin/gcc-5 /usr/local/cuda-8.0/bin/
sudo cp /usr/bin/g++-5 /usr/local/cuda-8.0/bin/
sudo ln -s /usr/bin/gcc-5 /usr/local/cuda-8.0/bin/gcc
sudo ln -s /usr/bin/g++-5 /usr/local/cuda-8.0/bin/g++
solution11 end
error12:
solution 12 start:
vim Makefile.config
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \\
-gencode arch=compute_35,code=sm_35 \\
-gencode arch=compute_50,code=sm_50 \\
-gencode arch=compute_50,code=compute_50
solution 12 end
sudo apt install python-pip
error13:
No package 'gstreamer-base-1.0' found
solution13 start:
sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
solution13 end
error14: sudo apt install nvidia-cuda-toolkit
解决apt-get安装中的E: Sub-process /usr/bin/dpkg returned an error code (1)问题 - orzs - 博客园
solution14 start:
cd /var/lib/dpkg/
sudo mv info/ info_bak # 现将info文件夹更名
sudo mkdir info #再新建一个新的info文件夹
sudo apt-get update #更新
sudo apt-get -f install #修复
sudo mv info/* info_bak/ # 执行完上一步操作后会在新的info文件夹下生成一些文件,现将这些文件全部移到info_bak文件夹下
sudo rm -rf info # 把自己新建的info文件夹删掉
sudo mv info_bak info
solution14 end
error16 caffe的两个重要错误_AlphaHolo的博客-CSDN博客
------------------------------------------------------------------------------------------------------------------------------
sudo apt-get install python-skimage
pip install protobuf
「Python」class DescriptorBase(metaclass=DescriptorMetaclass)_Liiipseoroinis-CSDN博客
最后,感谢王凌宇老师的指导,我才可以完成这复杂(对于我来说)的环境配置任务~
以上是关于ubuntu18.04 cuda8.0 cudnn5 caffe python2.7 install的主要内容,如果未能解决你的问题,请参考以下文章
ubuntu18.04 cuda8.0 cudnn5 caffe python2.7 install
ubuntu18.04 cuda8.0 cudnn5 caffe python2.7 install
GTX 1080+Ubuntu16.04+CUDA8.0+cuDNN5.0+TensorFlow
深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0