分布式Id生成方式

Posted swimming_in_it_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分布式Id生成方式相关的知识,希望对你有一定的参考价值。

为什么要用分布式ID?

在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

1、什么是分布式ID?

mysql数据库举个栗子:
在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。
但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID。

2、那么分布式ID需要满足那些条件?

全局唯一: 必须保证ID是全局性唯一的,基本要求

高性能: 高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈

高可用: 100%的可用性是骗人的,但是也要无限接近于100%的可用性

好接入: 要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单

趋势递增: 最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

二、 分布式ID都有哪些生成方式?

今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:

  1. UUID
  2. 数据库自增ID
  3. 数据库多主模式
  4. 号段模式
  5. Redis
  6. 雪花算法(SnowFlake)
  7. 滴滴出品(TinyID)
  8. 百度 (Uidgenerator)
  9. 美团(Leaf)

那么它们都是如何实现?以及各自有什么优缺点?我们往下看

1,基于UUID

  在Java的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!

public static void main(String[] args)  
       String uuid = UUID.randomUUID().toString().replaceAll("-","");
       System.out.println(uuid);
 

UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。

优点:
 生成足够简单,本地生成无网络消耗,具有唯一性

缺点:
 无序的字符串,不具备趋势自增特性

 没有具体的业务含义

 长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

2,基于数据库自增ID

  基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
    id bigint(20) unsigned NOT NULL auto_increment, 
    value char(10) NOT NULL default '',
    PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value)  VALUES ('values');

  当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!
优点: 实现简单,ID单调自增,数值类型查询速度快
缺点: DB单点存在宕机风险,无法扛住高并发场景

3,基于数据库集群模式

  前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

  那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

解决方案:设置起始值和自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

MySQL_2 配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

这样两个MySQL实例的自增ID分别就是:

那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。

从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。

  增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
优点:解决DB单点问题
缺点:不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4,基于数据库的号段模式

  号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

CREATE TABLE id_generator (
  id int(10) NOT NULL,
  max_id bigint(20) NOT NULL COMMENT '当前最大id',
  step int(20) NOT NULL COMMENT '号段的布长',
  biz_type    int(20) NOT NULL COMMENT '业务类型',
  version int(20) NOT NULL COMMENT '版本号',
  PRIMARY KEY (`id`)
) 

biz_type :代表不同业务类型
max_id :当前最大的可用id
step :代表号段的长度
version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

  等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

update id_generator set max_id = #max_id+step, version = version + 1 where version = # version and biz_type = XXX

  由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5,基于Redis模式

  Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增。

6,雪花算法(SnowFlake)

  雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

  Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。

  Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

  1. 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
  2. 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
  3. 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
  4. 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

  根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
Java版本的Snowflake算法实现:

/**
 * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
 *
 * https://github.com/beyondfengyu/SnowFlake
 */
public class SnowFlakeShortUrl 

    /**
     * 起始的时间戳
     */
    private final static long START_TIMESTAMP = 1480166465631L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数
    private final static long MACHINE_BIT = 5;     //机器标识占用的位数
    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

    /**
     * 每一部分的最大值
     */
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastTimeStamp = -1L;  //上一次时间戳

    private long getNextMill() 
        long mill = getNewTimeStamp();
        while (mill <= lastTimeStamp) 
            mill = getNewTimeStamp();
        
        return mill;
    

    private long getNewTimeStamp() 
        return System.currentTimeMillis();
    

    /**
     * 根据指定的数据中心ID和机器标志ID生成指定的序列号
     *
     * @param dataCenterId 数据中心ID
     * @param machineId    机器标志ID
     */
    public SnowFlakeShortUrl(long dataCenterId, long machineId) 
        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) 
            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
        
        if (machineId > MAX_MACHINE_NUM || machineId < 0) 
            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
        
        this.dataCenterId = dataCenterId;
        this.machineId = machineId;
    

    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() 
        long currTimeStamp = getNewTimeStamp();
        if (currTimeStamp < lastTimeStamp) 
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        

        if (currTimeStamp == lastTimeStamp) 
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) 
                currTimeStamp = getNextMill();
            
         else 
            //不同毫秒内,序列号置为0
            sequence = 0L;
        

        lastTimeStamp = currTimeStamp;

        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    

    public static void main(String[] args) 
        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);

        for (int i = 0; i < (1 << 4); i++) 
            //10进制
            System.out.println(snowFlake.nextId());
        
    

6,滴滴(TinyID)

  Tinyid由滴滴开发,Github地址:https://github.com/didi/tinyid。

  Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]

Tinyid提供http和tinyid-client两种方式接入

Http方式接入
  1. 导入Tinyid源码:git clone https://github.com/didi/tinyid.git
  2. 创建数据表:
CREATE TABLE `tiny_id_info` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
  `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
  `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
  `step` int(11) DEFAULT '0' COMMENT '步长',
  `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
  `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';

CREATE TABLE `tiny_id_token` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
  `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
  `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);


INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
  1. 配置数据库:
datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=123456

  1. 启动tinyid-server后测试

获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c’
返回结果: 3
批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10’
返回结果: 4,5,6,7,8,9,10,11,12,13

Http方式接入

重复Http方式的第二步和第三步操作引入依赖

       <dependency>
            <groupId>com.xiaoju.uemc.tinyid</groupId>
            <artifactId>tinyid-client</artifactId>
            <version>$tinyid.version</version>
        </dependency>
配置文件
tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c

  test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型

// 获取单个分布式自增ID
Long id =  TinyId . nextId( " test " );

// 按需批量分布式自增ID
List< Long > ids =  TinyId . nextId( " test " , 10 );

6,百度(Uidgenerator)

  uid-generator是由百度技术部开发,项目GitHub: https://github.com/baidu/uid-generator

  uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。

  uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。

对于uid-generator ID组成结构:

  workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。

参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

6,美团(Leaf)

Leaf由美团开发,github地址:https://github.com/Meituan-Dianping/Leaf

Leaf同时支持号段模式和snowflake算法模式,可以切换使用。

以上是关于分布式Id生成方式的主要内容,如果未能解决你的问题,请参考以下文章

雪花算法中机器id保证全局唯一

Spring Cloud(十六):微服务分布式唯一ID

分布式ID-ID生成器

常见分布式ID生成方案

常见分布式ID生成方案

分布式唯一ID生成算法-雪花算法