《深入理解Java虚拟机》读后笔记-垃圾收集算法

Posted LL.LEBRON

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《深入理解Java虚拟机》读后笔记-垃圾收集算法相关的知识,希望对你有一定的参考价值。

《深入理解Java虚拟机》读后笔记-垃圾收集算法

1.概述

垃圾收集需要完成的三件事情:

  1. 哪些内存需要回收?
  2. 什么时候回收?
  3. 如何回收?

对于Java内存运行时区域的各个部分:

  • 程序计数器、虚拟机栈、本地方法栈

    这三个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。

  • Java堆、方法区

    这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的。垃圾收集器所关注的正是这部分内存该如何管理。

2.如何判断对象已死?

2.1 引用计数算法

  • 在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一
  • 当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的

缺点:循环引用时,两个对象的引用计数都为1,导致两个对象都无法被释放回收。

2.2 可达性分析算法

  • 可达性分析算法的基本思路就是通过 一系列称为GC Roots的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为引用链(Reference Chain)
  • 如果某个对象到GC Roots间没有任何引用链相连, 或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。就是可回收对象

在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:

  • 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
  • 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
  • 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
  • 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
  • Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如 NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
  • 所有被同步锁(synchronized关键字)持有的对象。
  • 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

2.3 Java中的引用

在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

  1. 强引用
    • 是最传统的引用的定义,是指在程序代码之中普遍存在的引用赋值,即类似Objectobj=new Object()这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
  2. 软引用
    • 是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。
    • 在JDK 1.2版之后提供了SoftReference类来实现软引用。
  3. 弱引用
    • 也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象
    • 在JDK 1.2版之后提供了WeakReference类来实现弱引用。
  4. 虚引用
    • 也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知
    • 在JDK 1.2版之后提供了PhantomReference类来实现虚引用。

2.4 回收方法区

方法区垃圾收集的“性价”比通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。

方法区的垃圾收集主要回收两部分内容:废弃的常量不再使用的类型

  • 回收废弃常量与回收Java堆中的对象非常类似。举个常量池中字面量回收的例子,假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。常量池中其他类(接口)、方法、字段的符号引用也与此类似。
  • 判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:
    1. 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
    2. 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
    3. 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

3. 垃圾收集算法

3.1 分代收集理论

  1. 弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。
  2. 强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。
  3. 跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

设计者一般至少会把Java堆划分为新生代 (Young Generation)和老年代(Old Generation)两个区域。

顾名思义,在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放

依据跨代引用这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为记忆集,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生MinorGC时,只有包含了跨代引用的小块内存里的对象才会被加入到GCRoots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。

针对不同分代的GC名称:

  • 部分收集Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:

    • 新生代收集Minor GC/Young GC):指目标只是新生代的垃圾收集。
    • 老年代收集Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。(另外请注意“Major GC”这个说法现在有点混淆,在不同资料上常有不同所指, 读者需按上下文区分到底是指老年代的收集还是整堆收集)
    • 混合收集Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。
  • 整堆收集Full GC):收集整个Java堆和方法区的垃圾收集。

3.2 标记-清除算法

定义:首先标记出所有需要回收的对象。在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。

缺点:

  1. 执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低
  2. 容易产生大量的内存碎片,也就是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作

示意图如下:

3.3 标记-复制算法

定义:标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉

缺点:将可用内存缩小为了原来的一半,浪费空间

示意图:

半区复制分代策略:是把新生代分为一块较大的Eden空间和两块较小的 Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。

需要注意的是:

  • HotSpot虚拟机默认EdenSurvivor的大小比例是8∶1。也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%)。
  • Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

3.4 标记-整理算法

定义:其中的标记过程仍然与标记-清除算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存

缺点:涉及到对象的移动,会消耗时间,所以效率低

优点:不会有内存碎片

示意图如下:

标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的,两者各有优缺点:

移动则内存回收时会更复杂,不移动则内存分配时会更复杂。

从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。此语境中,吞吐量的实质是赋值器与收集器的效率总和。即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的

一个例子就是:HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的

以上是关于《深入理解Java虚拟机》读后笔记-垃圾收集算法的主要内容,如果未能解决你的问题,请参考以下文章

《深入理解Java虚拟机》笔记02 -- 垃圾收集算法

《深入理解JAVA虚拟机》----------第三章 垃圾收集器与内存分配策略,读后感(中)

深入理解Java虚拟机之读书笔记二 垃圾收集器

深入理解JVM虚拟机读书笔记——垃圾回收器

深入理解JVM虚拟机读书笔记——垃圾回收器

《深入理解java虚拟机》笔记JVM调优(分代垃圾收集器)