恋上数据结构-01复杂度

Posted 天又热了

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了恋上数据结构-01复杂度相关的知识,希望对你有一定的参考价值。

开发环境搭建

开发工具

  • eclipse: 使用linux压缩包版本
  • JDK1.8,也是linux压缩包版本

JDK1.8配置环境变量

ubuntu环境下需要打开~/.bashrc
输入一下代码

# set JDK
export JAVA_HOME=/usr/lib/jvm/jdk8
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib
export PATH=$JAVA_HOME/bin:$PATH

最后执行source ~/.bashrc生效

字体设置

linux中在window->preferences(偏好)->General->apperance->Colors And Fonts->Basic->TextFont->Edit->调整到17左右

行号设置


右键单机红色区域,选择show Line Numbers

常用快捷键(Linux)

代码提示 Alt + /

自动导入所需类 Ctrl + Shift + O

错误修复 Ctrl+1

快捷生成代码 Alt + Shift + S

代码提示增强

找到Window->Preferences->Java->Editor->Content Assist->Auto Activation -> Auto activation triggers for Java:
将下面需要代码提示的字符输入到下面的文本框
比如:.(abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
即可,附加:Auto-Activation:自动化, Auto Activation Triggers-自动激活触发器

修改工作空间默认编码

Window->Preferences->General->Workspace->Text file encoding, 选择other, 填写UTF-8

复杂度

什么是算法

算法是用来解决特定问题的一系列执行步骤

使用不同的算法,解决同一个问题,效率相差可能很大

比如求第n个斐波那契数(fibonacci number)

如何评价一个算法的好坏

单从执行效率

  • 比较不同算法对同一组输入的执行处理时间
  • 这种方案叫做事后统计法

事后统计法缺点

  • 执行时间严重依赖硬件以及运行时的不确定因素
  • 必须编写相应的测算代码
  • 测试数据的选择比较难以保证公正性

算法优劣评估

  • 正确性, 可读性,健壮性(对不合理输入的反应和处理能力)
  • 时间复杂度(time complexity):估算程序指令的执行次数(执行时间)
  • 空间复杂度(space complexity):估算所需占用的存储空间

大O表示法(Big O)

大O表示法描述复杂度,它代表数据规模n对应的复杂度

忽略常数,系数,低阶

  • 9 >> O(1)
  • 2n+3>>O(n)
  • n2 +2n+6 >> O(n2)
  • 4n3+3n2+ 22n+100>>O(n3)
  • 写法上n3 = n ^ 3

注意:大O表示法仅仅是一种粗略的分析模型, 是一种估算,能帮助我们短时间内了解一种算法的执行效率

对数阶的细节

log2n=log29+log9n

log2n, log9n统称为logn

常见复杂度

执行次数复杂度非正式术语
12O(1)常数阶
2n+3O(n)线性阶
4n2+2n+25O(n2)平方阶
4log2nO(logn)对数阶
3n+2nlog3n+15O(nlogn)nlogn阶
4n3+3n2+22n+100O(n3)c立方阶
2nO(2n)指数阶

O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(2n)<O(n!)<O(nn)

可以借助函数生成工具比较复杂度的大小

  • https://zh.numberempire.com/graphingcalculator.php
  • 选择函数图像绘制工具即可

fibonacci函数的时间复杂度分析(递归)

1+2+4+8= 15 = 24-1 = 25-1=2n-1-1=0.5*2n-1

0.5*2n-1,忽略常数,系数,低阶复杂度就是O(2n)

fib函数的时间复杂度分析

O(2n)

public static int fib(int n)
	if (n <= 1) return n;
	return fib(n-1)+fib(n-2);

O(n)

public static int fib(int n)
	if (n <= 1) return n;
	int first = 0; 
	int second = 1;
	while(n-- > 1)
		second += first;
		first = second-first;
	
	return second;

差别

  • 如果是一台1GHZ的普通计算机,运行速度109次每秒,(n为64)
  • O(n)大约耗时6.4*10-8
  • O(2n)大约耗时584.94年
  • 有时候算法之间的差距,往往比硬件方面的差距大

Something interesting

  • 我是一个斐波那契程序员
  • 因为我们都在改昨天和前天的bug

斐波那契的线性代数解法-特征方程

这个暂时没看懂========
================这个又看了一下视频, 基本上就是一个固定的公式,老师说并不是全部的都有这种巧合,因此记住这一个就行。
F(n) = c1x1n+c2x2n.
x1=(1+51/2)/2
x2=(1-51/2)/2
c1=5-1/2
c2=-5-1/2
F(n)=5-1/2 [(1+51/2)/2-(1-51/2)/2]

public static int fib3(int n)
	double c = Math.sqrt(5);
	return (int)((Math.pow((1+c)/2,n)-Math.pow((1-c)/2,n))/c)

复杂度是O(1)!!!

算法优化方向

尽量少存储空间

尽量少执行步骤(执行时间)

根据情况时间换空间或空间换时间

多个数据规模情况-O(n+k)

public static void test(int n, int k)
	for(int i = 0; i < n; i ++)
		System.out.println("test");
	
		for(int i = 0; i < k; i ++)
		System.out.println("test");
	

以上是关于恋上数据结构-01复杂度的主要内容,如果未能解决你的问题,请参考以下文章

恋上数据结构队列 Queue

恋上数据结构与算法 —— 布隆过滤器

光华里恋上咖啡节强势来袭!!!

恋上数据结构和算法第三季

恋上数据结构栈 Stack

好课推荐:恋上数据结构与算法第二季高清完整