redis源码学习看看redis的“哈希表”实现
Posted 看,未来
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了redis源码学习看看redis的“哈希表”实现相关的知识,希望对你有一定的参考价值。
文章目录
抛砖引玉
先手写一个哈希表吧。
三小时过去…
就这种源码中的数据结构啊,我个人是比较推崇大家自己先看概念手写一个,能不能动咱另说,在写的过程中会领悟到很多直接看所领悟不到的细节。
redis 中 哈希表的实现
哈希表主要看哪些方面?底层承载的数据结构、节点数据结构、哈希函数、冲突解决,还有啥?扩容与rehash…
关于增删查改就不多说了吧,哈希表的增删查改,挺常见了。
哈希函数
redis 使用的是 siphash,计算出来的hash值具有强分布性,不过算法有点复杂(可以把“有点”,换成“比较”,反正我看晕了)。
uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k)
#ifndef UNALIGNED_LE_CPU
uint64_t hash;
uint8_t *out = (uint8_t*) &hash;
#endif
uint64_t v0 = 0x736f6d6570736575ULL;
uint64_t v1 = 0x646f72616e646f6dULL;
uint64_t v2 = 0x6c7967656e657261ULL;
uint64_t v3 = 0x7465646279746573ULL;
uint64_t k0 = U8TO64_LE(k);
uint64_t k1 = U8TO64_LE(k + 8);
uint64_t m;
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
v3 ^= k1;
v2 ^= k0;
v1 ^= k1;
v0 ^= k0;
for (; in != end; in += 8)
m = U8TO64_LE(in);
v3 ^= m;
SIPROUND;
v0 ^= m;
switch (left)
case 7: b |= ((uint64_t)in[6]) << 48; /* fall-thru */
case 6: b |= ((uint64_t)in[5]) << 40; /* fall-thru */
case 5: b |= ((uint64_t)in[4]) << 32; /* fall-thru */
case 4: b |= ((uint64_t)in[3]) << 24; /* fall-thru */
case 3: b |= ((uint64_t)in[2]) << 16; /* fall-thru */
case 2: b |= ((uint64_t)in[1]) << 8; /* fall-thru */
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
v3 ^= b;
SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND;
SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
#ifndef UNALIGNED_LE_CPU
U64TO8_LE(out, b);
return hash;
#else
return b;
#endif
网上也有关于这个算法的解释,有兴趣的朋友可以自己找来看,准备点小零食,加杯咖啡,有条件可以再来包袋装方便面,不要拆,以备不时之需呀!
冲突解决
开链法。不用多说了吧。
表结构
再往下就没太多意思了,我就意思意思吧。本来以为这篇会很难写的,没想到难的部分我直接就看不懂了,倒是轻松了。
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
typedef struct dictht
dictEntry **table; //存储键值对
unsigned long size; //计算table总大小
unsigned long sizemask; //掩码
unsigned long used; //记录开的链里面有几个节点
dictht;
单个节点
typedef struct dictEntry
void *key;
union
void *val;
uint64_t u64;
int64_t s64;
double d;
v;
struct dictEntry *next;
dictEntry; //喏,这里体现出开链了
这个 v 我解释一下,是个联合体看得出来,存的是值,为什么要用联合体?因为可以在不同场景下发挥不同的作用。这个技法学了好多次都记不住。
如:
存数据键值对的时候,用val;
存过期时间的时候,用s64;
容量变化
先说说扩容吧,拿源码直接看:
typedef struct dict
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
dict;
/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
/* the size is invalid if it is smaller than the number of
* elements already inside the hash table */
if (dictIsRehashing(d) || d->ht[0].used > size)
return DICT_ERR;
dictht n; /* the new hash table */
unsigned long realsize = _dictNextPower(size);
/* Rehashing to the same table size is not useful. */
if (realsize == d->ht[0].size) return DICT_ERR;
/* Allocate the new hash table and initialize all pointers to NULL */
n.size = realsize;
n.sizemask = realsize-1;
n.table = zcalloc(realsize*sizeof(dictEntry*));
n.used = 0;
/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
if (d->ht[0].table == NULL)
d->ht[0] = n;
return DICT_OK;
/* Prepare a second hash table for incremental rehashing */
d->ht[1] = n;
d->rehashidx = 0;
return DICT_OK;
光看上面的,有点未见全貌。
/* This is the initial size of every hash table */
#define DICT_HT_INITIAL_SIZE 4
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
/* Incremental rehashing already in progress. Return. */
if (dictIsRehashing(d)) return DICT_OK;
/* If the hash table is empty expand it to the initial size. */
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
/* If we reached the 1:1 ratio, and we are allowed to resize the hash
* table (global setting) or we should avoid it but the ratio between
* elements/buckets is over the "safe" threshold, we resize doubling
* the number of buckets. */
if (d->ht[0].used >= d->ht[0].size &&
(dict_can_resize ||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
return dictExpand(d, d->ht[0].used*2);
return DICT_OK;
看一下真正作为底层被调用的函数,就清楚了。
所以扩容的步骤是:
1、如果是第一次,那就直接给 4 个 dictEntry。
2、如果不是第一次,那就翻倍给。
3、把新申请内存的地址存放在ht[1],并将 rehashidx 标识由 -1 转 0,表示需要进行 rehash 操作。
4、进行rehash操作。
rehash
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n)
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
while(n-- && d->ht[0].used != 0)
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL)
d->rehashidx++;
if (--empty_visits == 0) return 1;
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de)
uint64_t h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0)
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
/* More to rehash... */
return 1;
服务繁忙时的渐进式rehash!!!
/* This function performs just a step of rehashing, and only if there are
* no safe iterators bound to our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d)
if (d->iterators == 0) dictRehash(d,1);
当redis中数据量大的时候,整个rehash过程将非常缓慢。
redis采用了“分而治之”的思想,执行增删查改前,先判断当前字典是否在执行rehash。如果是,则rehash一个节点。
服务空闲时的批量rehash!!!
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms)
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100))
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
return rehashes;
每次对100个节点进行rehash操作。
迭代器
redis 的迭代器也是很有特色的。它不仅提供了我们平时使用的迭代器,还提供了另一种边迭代边删除数据的迭代器。
其实迭代数据和删除数据操作分开来看都不难,但是鉴于redis是单线程操作,所以需要尽可能的将多个操作合成少量操作,以此提高效率,于是就出现了这种“新型迭代器”。
其实把俩操作合在一起,也很简单嘛。但是放在这么一个场景了,那就不简单了。毕竟redis是存在渐进式rehash的。你说我遍历一个,你rehash一次,这成何体统?这数据不就乱套了嘛。
所以,这个安全迭代器在迭代的时候,会促使rehash被迫暂停营业。
间接迭代,防止大批量数据查询卷死自己
那,如果有人大批量的获取数据呢?这迭代器不得累死吗?迭代器累死就算了,别把整个redis给累死啊,那问题就大了。
所以,redis采用了间接迭代的方式。
这里稍微提一下,可以参考mysql的批量插入。
使用游标啦。。
吃饭吃饭,不然它还没卷死我就先饿死了。。
以上是关于redis源码学习看看redis的“哈希表”实现的主要内容,如果未能解决你的问题,请参考以下文章