使Flink SQL Kafka Source支持独立设置并行度

Posted LittleMagics

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使Flink SQL Kafka Source支持独立设置并行度相关的知识,希望对你有一定的参考价值。

前言

社区在Flink 1.12版本通过FLIP-146提出了增强Flink SQL DynamicTableSource/Sink接口的动议,其中的一个主要工作就是让它们支持独立设置并行度。很多Sink都已经可以配置sink.parallelism参数(见FLINK-19937),但Source还没动静。这是因为Source一直以来有两种并行的标准,一是传统的流式SourceFunction与批式InputFormat,二是原生支持流批一体的FLIP-27 Source,并且Connector之间的实现并不统一。

笔者最近在Flink钉群闲逛时,经常看到如下图所示的发言,可见大家对Source(主要是Kafka Source)支持独立设置并行度的需求比较急切。

本文就来基于1.13.0版本实现该需求,注意此版本的SQL Kafka Source尚未迁移到FLIP-27。这项改进已经过验证,可以在生产环境使用,但仍属于过渡方案,故不会向社区发起PR。

实现ParallelismProvider

ScanTableSource的运行时逻辑需要由ScanTableSource.ScanRuntimeProvider来提供,一共有5种,如下图所示。

显然我们要修改SourceFunctionProvider,让它实现FLIP-146定义的ParallelismProvider接口,表示它支持独立设置并行度。代码很简单:

@PublicEvolving
public interface SourceFunctionProvider extends ScanTableSource.ScanRuntimeProvider, ParallelismProvider 

    /** Helper method for creating a static provider. */
    static SourceFunctionProvider of(SourceFunction<RowData> sourceFunction, boolean isBounded) 
        return new SourceFunctionProvider() 
            @Override
            public SourceFunction<RowData> createSourceFunction() 
                return sourceFunction;
            

            @Override
            public boolean isBounded() 
                return isBounded;
            
        ;
    

    /** Helper method for creating a static provider with a provided parallelism. */
    static SourceFunctionProvider of(SourceFunction<RowData> sourceFunction, boolean isBounded, Integer sourceParallelism) 
        return new SourceFunctionProvider() 
            @Override
            public SourceFunction<RowData> createSourceFunction() 
                return sourceFunction;
            

            @Override
            public boolean isBounded() 
                return isBounded;
            

            @Override
            public Optional<Integer> getParallelism() 
                return Optional.ofNullable(sourceParallelism);
            
        ;
    

    /** Creates a @link SourceFunction instance. */
    SourceFunction<RowData> createSourceFunction();

添加scan.parallelism参数

o.a.f.table.factories.FactoryUtil中添加:

public static final ConfigOption<Integer> SCAN_PARALLELISM =
        ConfigOptions.key("scan.parallelism")
                .intType()
                .noDefaultValue()
                .withDescription(
                        "Defines a custom parallelism for the scan source. "
                                + "By default, if this option is not defined, the planner will derive the parallelism "
                                + "for each statement individually by also considering the global configuration.");

修改Kafka Connector

首先修改KafkaDynamicSource

  • 在构造方法中添加@Nullable Integer parallelism及相关的代码;
  • getScanRuntimeProvider()方法的最后:
return SourceFunctionProvider.of(kafkaConsumer, false, parallelism);
  • copy() / equals() / hashCode()方法内加上parallelism

然后修改KafkaDynamicTableFactory,加入SCAN_PARALLELISM参数,以及使用带并行度的KafkaDynamicSource构造方法,不再赘述。

修改Source物理执行节点

负责使ScanTableSource发挥作用的物理执行节点为CommonExecTableSourceScan,注意到它的translateToPlanInternal()方法中,对不同类型的ScanRuntimeProvider分别做了处理。我们找到SourceFunctionProvider对应的那个判断分支,加上与并行度相关的代码。

if (provider instanceof SourceFunctionProvider) 
    SourceFunction<RowData> sourceFunction =
            ((SourceFunctionProvider) provider).createSourceFunction();
    DataStreamSource<RowData> streamSource = env.addSource(
            sourceFunction, operatorName, outputTypeInfo);
    
    final int confParallelism = streamSource.getParallelism();
    final int sourceParallelism = deriveSourceParallelism(
            (ParallelismProvider) provider, confParallelism);
    
    Transformation<RowData> transformation = streamSource.getTransformation();
    transformation.setParallelism(sourceParallelism);
    return transformation;


private int deriveSourceParallelism(                                                     
        ParallelismProvider parallelismProvider, int confParallelism)                   
    final Optional<Integer> parallelismOptional = parallelismProvider.getParallelism();  
    if (parallelismOptional.isPresent())                                                
        int sourceParallelism = parallelismOptional.get();                               
        if (sourceParallelism <= 0)                                                     
            throw new TableException(                                                    
                    String.format(                                                       
                            "Table: %s configured source parallelism: "                  
                                    + "%s should not be less than zero or equal to zero",
                            tableSourceSpec.getObjectIdentifier().asSummaryString(),     
                            sourceParallelism));                                         
                                                                                        
        return sourceParallelism;                                                        
     else                                                                                                   
        return confParallelism;                                                          
                                                                                        

大功告成?

将全局并行度设为10,用一条简单的SQL语句测试一下:

SELECT siteId, COUNT(orderId)
FROM rtdw_dwd.kafka_order_done_log /*+ OPTIONS('scan.parallelism'='5') */
WHERE mainSiteId = 10029
GROUP BY siteId;

emm,看起来似乎不太对,为什么Source后面的Calc节点并行度也变成了5?这是因为Calc的并行度默认以输入流的并行度决定,所以我们还要提供强制打断算子链的选项,让Calc能够恢复全局并行度。

ExecutionConfigOptions中加入一个参数table.exec.source.force-break-chain

@Documentation.TableOption(execMode = Documentation.ExecMode.STREAMING)
public static final ConfigOption<Boolean> TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN =
        key("table.exec.source.force-break-chain")
                .booleanType()
                .defaultValue(false)
                .withDescription(
                        "Indicates whether to forcefully break the operator chain after the source.");

然后在上面改过的CommonExecTableSourceScan代码中,加入对此参数的判断,如果为true,则调用disableChaining()方法断链。

final Configuration config = planner.getTableConfig().getConfiguration();
if (config.get(ExecutionConfigOptions.TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN)) 
    streamSource.disableChaining();

最后不要忘了修改CommonExecCalc。如果它的输入是CommonExecTableSourceScan且上述参数生效,那么就将它的并行度直接置为PARALLELISM_DEFAULT,即全局并行度。

@Override
protected Transformation<RowData> translateToPlanInternal(PlannerBase planner) 
    final ExecEdge inputEdge = getInputEdges().get(0);
    final Transformation<RowData> inputTransform =
            (Transformation<RowData>) inputEdge.translateToPlan(planner);
    final CodeGeneratorContext ctx = /* ... */;
    final CodeGenOperatorFactory<RowData> substituteStreamOperator = /* ... */;

    int parallelism = inputTransform.getParallelism();
    if (inputEdge.getSource() instanceof CommonExecTableSourceScan) 
        final Configuration config = planner.getTableConfig().getConfiguration();
        if (config.get(ExecutionConfigOptions.TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN)) 
            parallelism = ExecutionConfig.PARALLELISM_DEFAULT;
        
    
    return new OneInputTransformation<>(
            inputTransform,
            getDescription(),
            substituteStreamOperator,
            InternalTypeInfo.of(getOutputType()),
            parallelism);

再试一试,结果符合预期:

提供强制断链的参数还有一重好处,即能够在SQL作业并行度变化时安全地恢复现场。举个例子,若Source并行度和全局并行度起初都是5,但是在作业运行过程中发现下游处理速度不够,而将全局并行度提升到10的话,那么原有的checkpoint将无法使用——因为并行度的变化导致了作业拓扑变化。如果我们在一开始就将table.exec.source.force-break-chain设为true,那么上面所述的情况将不会造成困扰。

The End

民那晚安晚安。

以上是关于使Flink SQL Kafka Source支持独立设置并行度的主要内容,如果未能解决你的问题,请参考以下文章

Flink 实战系列Flink SQL 实时同步 Kafka 数据到 Hudi(parquet + snappy)

flink之source

开发者干货 | 当Flink遇到Kafka - FlinkKafkaConsumer使用详解

Flink案例——kafkaMySQL source

Flink案例——kafkaMySQL source

Flink案例——kafkaMySQL source