初识Pytorch使用transforms

Posted 游客26024

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了初识Pytorch使用transforms相关的知识,希望对你有一定的参考价值。

首先,这次讲解的tansforms功能,通俗地讲,类似于在计算机视觉流程里的图像预处理部分的数据增强。

  1. transforms的原理:
    说明:图片(输入)通过工具得到结果(输出),这个工具,就是transforms模板工具,(tool=transforms.ToTensor()具体工具),使用工具result=tool(图片)
  2. tansforms的调用与使用,由下图可得:
  • 先创建一个transforms.Tensor(),使用from torchvision import transforms调包
  • transforms去调init函数
  • init去调用真正的transforms类,里面就有很多的方法(绿色五角星标注),例如:resize,ToTensor,CenterCrop(从这些方法可以看出,许多都是数据增强的方法)。


3. 接下来,上代码:

import os
from torchvision import transforms
from PIL import Image

root_path = "D:\\\\data\\\\basic\\\\Image"
label_path = "aligned"

# 1.获取aligned第一张图的名字
img_dir = os.path.join(root_path, label_path)
img_list = os.listdir(img_dir)
img_path = img_list[0]

# 2.获取aligned第一张图的路径
img = os.path.join(root_path, label_path, img_path)

# 3.使用python自带的PIL获取图片
img = Image.open(img)

# 4.将PIL利用transforms转换成ToTensor
to_tensor = transforms.ToTensor()  # 创建totensor ()
img = to_tensor(img)  # 使用to_tensor直接将图片的PIL转化为tensor

print(img)
# transforms
  1. 代码结果:

    上一章 初识Pytorch使用Tensorboard来观察数据
    下一章 初识Pytorch之Tensorboard与Transforms搭配使用

以上是关于初识Pytorch使用transforms的主要内容,如果未能解决你的问题,请参考以下文章

PT之Transformer:基于PyTorch框架利用Transformer算法针对IMDB数据集实现情感分类的应用案例代码解析

是否可以在 transform.compose 中使用非 pytorch 增强

Temporal Fusion Transformer (TFT) 各模块功能和代码解析(pytorch)

pytorch 笔记: Swin-Transformer 代码

深度学习 Transformer 中的 Encoder 机制,附Pytorch完整代码

transformer的一些理解以及逐层架构剖析与pytorch代码实现