优化算法帝国主义竞争优化算法(ICA)含Matlab源码 1635期

Posted 紫极神光

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了优化算法帝国主义竞争优化算法(ICA)含Matlab源码 1635期相关的知识,希望对你有一定的参考价值。

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【优化算法】帝国主义竞争优化算法(ICA)【含Matlab源码 1635期】

获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、帝国主义竞争优化算法简介

帝国主义算法流程描述如下:
1)初始化帝国主义竞争算法的参数:Npop,Nimp2)随机生成Npop作为国家的人口数量。选择Nimp最好的国家作为帝国并根据他们的能力规定他们的殖民地数量;
3)如果终止条件未得到满足,则重复下列步骤;
4)内部位置交换;
5)帝国主义竞争;
6)淘汰弱小的帝国;
7)保留最终剩余的帝国,其适应度取值作为最优解。
流程图如图1所示。

三、部分源代码

close all
clc; clear
%% Problem Statement
ProblemParams.CostFuncName = 'BenchmarkFunction';    % You should state the name of your cost function here.
ProblemParams.CostFuncExtraParams = 6;
ProblemParams.NPar = 30;                           % Number of optimization variables of your objective function. "NPar" is the dimention of the optimization problem.
ProblemParams.VarMin = -6;                         % Lower limit of the optimization parameters. You can state the limit in two ways. 1)   2)
ProblemParams.VarMax = 6;                       % Lower limit of the optimization parameters. You can state the limit in two ways. 1)   2)

% Modifying the size of VarMin and VarMax to have a general form
if numel(ProblemParams.VarMin)==1
    ProblemParams.VarMin=repmat(ProblemParams.VarMin,1,ProblemParams.NPar);
    ProblemParams.VarMax=repmat(ProblemParams.VarMax,1,ProblemParams.NPar);
end

ProblemParams.SearchSpaceSize = ProblemParams.VarMax - ProblemParams.VarMin;

%% Algorithmic Parameter Setting
AlgorithmParams.NumOfCountries = 200;               % Number of initial countries.
AlgorithmParams.NumOfInitialImperialists = 8;      % Number of Initial Imperialists.
AlgorithmParams.NumOfAllColonies = AlgorithmParams.NumOfCountries - AlgorithmParams.NumOfInitialImperialists;
AlgorithmParams.NumOfDecades = 2000;
AlgorithmParams.RevolutionRate = 0.3;               % Revolution is the process in which the socio-political characteristics of a country change suddenly.
AlgorithmParams.AssimilationCoefficient = 2;        % In the original paper assimilation coefficient is shown by "beta".
AlgorithmParams.AssimilationAngleCoefficient = .5;  % In the original paper assimilation angle coefficient is shown by "gama".
AlgorithmParams.Zeta = 0.02;                        % Total Cost of Empire = Cost of Imperialist + Zeta * mean(Cost of All Colonies);
AlgorithmParams.DampRatio = 0.99;
AlgorithmParams.StopIfJustOneEmpire = false;         % Use "true" to stop the algorithm when just one empire is remaining. Use "false" to continue the algorithm.
AlgorithmParams.UnitingThreshold = 0.02;            % The percent of Search Space Size, which enables the uniting process of two Empires.

zarib = 1.05;                       % **** Zarib is used to prevent the weakest impire to have a probability equal to zero
alpha = 0.1;                        % **** alpha is a number in the interval of [0 1] but alpha<<1. alpha denotes the importance of mean minimum compare to the global mimimum.

%% Display Setting
DisplayParams.PlotEmpires = false;    % "true" to plot. "false" to cancel ploting.
if DisplayParams.PlotEmpires
    DisplayParams.EmpiresFigureHandle = figure('Name','Plot of Empires','NumberTitle','off');
    DisplayParams.EmpiresAxisHandle = axes;
end

DisplayParams.PlotCost = true;    % "true" to plot. "false"
if DisplayParams.PlotCost
    DisplayParams.CostFigureHandle = figure('Name','Plot of Minimum and Mean Costs','NumberTitle','off');
    DisplayParams.CostAxisHandle = axes; 
end

ColorMatrix = [1   0   0  ; 0 1   0    ; 0   0 1    ; 1   1   0  ; 1   0 1    ; 0 1   1    ; 1 1 1       ;
               0.5 0.5 0.5; 0 0.5 0.5  ; 0.5 0 0.5  ; 0.5 0.5 0  ; 0.5 0 0    ; 0 0.5 0    ; 0 0 0.5     ;
               1   0.5 1  ; 0.1*[1 1 1]; 0.2*[1 1 1]; 0.3*[1 1 1]; 0.4*[1 1 1]; 0.5*[1 1 1]; 0.6*[1 1 1]];
DisplayParams.ColorMatrix = [ColorMatrix ; sqrt(ColorMatrix)];

DisplayParams.AxisMargin.Min = ProblemParams.VarMin;
DisplayParams.AxisMargin.Max = ProblemParams.VarMax;

%% Creation of Initial Empires
InitialCountries = GenerateNewCountry(AlgorithmParams.NumOfCountries , ProblemParams);

% Calculates the cost of each country. The less the cost is, the more is the power.
if isempty(ProblemParams.CostFuncExtraParams)
    InitialCost = feval(ProblemParams.CostFuncName,InitialCountries);    
else
    InitialCost = feval(ProblemParams.CostFuncName,InitialCountries,ProblemParams.CostFuncExtraParams);
end
[InitialCost,SortInd] = sort(InitialCost);                          % Sort the cost in assending order. The best countries will be in higher places
InitialCountries = InitialCountries(SortInd,:);                     % Sort the population with respect to their cost.

Empires = CreateInitialEmpires(InitialCountries,InitialCost,AlgorithmParams, ProblemParams);

%% Main Loop
MinimumCost = repmat(nan,AlgorithmParams.NumOfDecades,1);
MeanCost = repmat(nan,AlgorithmParams.NumOfDecades,1);

if DisplayParams.PlotCost
    axes(DisplayParams.CostAxisHandle);
    if any(findall(0)==DisplayParams.CostFigureHandle)
        h_MinCostPlot=plot(MinimumCost,'r','LineWidth',1.5,'YDataSource','MinimumCost');
        hold on;
        h_MeanCostPlot=plot(MeanCost,'k:','LineWidth',1.5,'YDataSource','MeanCost');
        hold off;
        pause(0.05);
    end
end

for Decade = 1:AlgorithmParams.NumOfDecades
    AlgorithmParams.RevolutionRate = AlgorithmParams.DampRatio * AlgorithmParams.RevolutionRate;

    Remained = AlgorithmParams.NumOfDecades - Decade
    for ii = 1:numel(Empires)
        %% Assimilation;  Movement of Colonies Toward Imperialists (Assimilation Policy)
        Empires(ii) = AssimilateColonies(Empires(ii),AlgorithmParams,ProblemParams);

        %% Revolution;  A Sudden Change in the Socio-Political Characteristics
        Empires(ii) = RevolveColonies(Empires(ii),AlgorithmParams,ProblemParams);
        
        %% New Cost Evaluation
        if isempty(ProblemParams.CostFuncExtraParams)
            Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosition);
        else
            Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosition,ProblemParams.CostFuncExtraParams);
        end

        %% Empire Possession  (****** Power Possession, Empire Possession)
        Empires(ii) = PossesEmpire(Empires(ii));
        
        %% Computation of Total Cost for Empires
        Empires(ii).TotalCost = Empires(ii).ImperialistCost + AlgorithmParams.Zeta * mean(Empires(ii).ColoniesCost);
    
    end
    
    %% Uniting Similiar Empires
    Empires = UniteSimilarEmpires(Empires,AlgorithmParams,ProblemParams);

    %% Imperialistic Competition
    Empires = ImperialisticCompetition(Empires);
    
    if numel(Empires) == 1 && AlgorithmParams.StopIfJustOneEmpire
        break
    end

    %% Displaying the Results
    DisplayEmpires(Empires,AlgorithmParams,ProblemParams,DisplayParams);
    
    ImerialistCosts = [Empires.ImperialistCost];
    MinimumCost(Decade) = min(ImerialistCosts);
    MeanCost(Decade) = mean(ImerialistCosts);

    if DisplayParams.PlotCost
        refreshdata(h_MinCostPlot);
        refreshdata(h_MeanCostPlot);
        drawnow;
        pause(0.01);
    end

四、运行结果

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]陈志楚,李聪,张超勇.基于帝国主义竞争算法的切削参数优化[J].制造业自动化. 2012,34(24)

以上是关于优化算法帝国主义竞争优化算法(ICA)含Matlab源码 1635期的主要内容,如果未能解决你的问题,请参考以下文章

风电功率预测基于matlab帝国殖民竞争算法优化BP神经网络风电功率预测含Matlab源码 1314期

优化调度基于matlab帝国企鹅算法求解航空调度优化问题含Matlab源码 YXS001期

优化调度基于matlab帝国企鹅算法求解航空调度优化问题含Matlab源码 YXS001期

优化求解基于matlab粒子群算法和帝国殖民算法和萤火虫算法求解最小生成树优化问题含Matlab源码 2376期

多式联运基于帝国企鹅算法+遗传算法+粒子群算法求解不确定多式联运路径优化问题含Matlab源码 2073期

多式联运基于帝国企鹅算法+遗传算法+粒子群算法求解不确定多式联运路径优化问题含Matlab源码 2073期