运动学基于matlab GUI模拟小球自由落体含Matlab源码 1630期
Posted 紫极神光
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了运动学基于matlab GUI模拟小球自由落体含Matlab源码 1630期相关的知识,希望对你有一定的参考价值。
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源: 【运动学】基于matlab GUI模拟小球自由落体【含Matlab源码 1630期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、部分源代码
function bb()
% BB Bouncing Ball Physics
% BB is a graphical User Interface that creates a simple simulation of a ball bouncing
% off the ground.
%
% Ball Parameters are:
%
% Height from the center of the ball to the ground is 10. This is constant and cannot
% change. Instead, change the other parameters since they're all relative.
%
% Radius: Radius of the ball. It's best to put it between 1 and 9. Any value equal to
% or above 10 will present problems as 10 is the distance from the centre of the ball
% to the ground.
%
% Gravity: Affect the ratio in which the ball gains speed in the negative Y direction.
%
% Initial Yv: Initial velocity in the Y direction. Can be positive, negative, or anything.
%
% Initial Xv: Initial velocity in the X direction. Can be positive, negative, or anything.
%
% Vertical Speed Conservation (%): Affects how much energy (velocity) is retained in the
% Y direction after hitting the ground. A value of 0 to 100 is normal. A value of 0 means
% no energy is retained and the ball comes to a halt after hitting the ground. A value
% of 100 means all energy is retained and the ball will bounce indefinitely. A value of
% over 100 will cause energy to increase after hitting the ground.
%
% Horizontal Speed Conservation (%): Same as Vertical Speed Conservation but in the
% X direction.
%
% Colour: Three element vector ([R G B]) in which the ball appears in. Each
% element should be between or equal 0 and 1.
%
%
% Plotting a path enables you to see the x-y diagram of the ball's movement and gives
% you the ability to pan the axes with the mouse.
%
% To launch the GUI, type bb in the command window with this file in the current
% directory. Alternatively, you can choose Debug -> Run from this editor window, or
% press F5.
%
%
figure('units','normalized','position',[.2 .2 .65 .65],'menubar','none','numbertitle','off','color','w','name','Bouncing Ball')
axes('position',[.25 .05 .65 .75])
ed1=uicontrol('style','edit','units','normalized','position',[.025 .895 .1 .05],'backgroundcolor','w','string','1','callback',@init);
uicontrol('style','text','units','normalized','position',[.025 .96 .1 .025],'backgroundcolor','w','string','Radius');
ed2=uicontrol('style','edit','units','normalized','position',[.025 .775 .1 .05],'backgroundcolor','w','string','9.81');
uicontrol('style','text','units','normalized','position',[.025 .84 .1 .025],'backgroundcolor','w','string','Gravity');
ed3=uicontrol('style','edit','units','normalized','position',[.025 .65 .1 .05],'backgroundcolor','w','string','0');
uicontrol('style','text','units','normalized','position',[.025 .72 .1 .025],'backgroundcolor','w','string','Initial Yv');
ed4=uicontrol('style','edit','units','normalized','position',[.025 .535 .1 .05],'backgroundcolor','w','string','500');
uicontrol('style','text','units','normalized','position',[.025 .6 .1 .025],'backgroundcolor','w','string','Initial Xv');
ed5=uicontrol('style','edit','units','normalized','position',[.025 .415 .1 .05],'backgroundcolor','w','string','70');
uicontrol('style','text','units','normalized','position',[.005 .48 .21 .025],'backgroundcolor','w','string',...
'Vertical Speed Conservation (%)','horizontalalignment','left');
ed6=uicontrol('style','edit','units','normalized','position',[.025 .295 .1 .05],'backgroundcolor','w','string','50');
uicontrol('style','text','units','normalized','position',[.005 .36 .21 .025],'backgroundcolor','w','string',...
'Horizontal Speed Conservation (%)','horizontalalignment','left');
ed7=uicontrol('style','edit','units','normalized','position',[.025 .175 .1 .05],'backgroundcolor','w','string','1 0 0','callback',@init);
uicontrol('style','text','units','normalized','position',[.025 .24 .1 .025],'backgroundcolor','w','string','Colour ([R G B])');
tb=uicontrol('style','togglebutton','string','Start','callback',@go,'units','normalized','position',[.025 .05 .1 .05],...
'backgroundcolor','w');
chk=uicontrol('style','checkbox','string','Plot Path','units','normalized','position',[.025 .125 .1 .025],'backgroundcolor','w');
init;
function [hb,h2,hx,h1,r,t]=init(varargin)
r=str2double(get(ed1,'string'));
t=linspace(0,2*pi,100);
cla reset
hold on
cl=str2num(get(ed7,'string')); %#ok
h1=fill((5)+r*cos(t),(10)+r*sin(t),cl);
axis([0 10 -1 10+r+1])
axis equal
hx=axis;
hL=line(1000.*[hx(1),hx(2)],[0 0]);
set(hL,'color','k','linestyle','-','linewidth',3)
hL=line(1000.*[hx(1),hx(2)],[10 10]);
axis(hx)
set(hL,'color','c','linestyle','--')
set(h1,'linewidth',2)
h2=plot(5,10,'k+');
hb=[h1,h2];
end
function go(varargin)
set(tb,'value',0)
if strcmp(get(tb,'string'),'Start')
set(tb,'string','Stop')
else
set(tb,'string','Start')
return
end
dt=1;
[hb,h2,hx,h1,r,t]=init;
a=str2double(get(ed2,'string'))/2000;
Yv=str2double(get(ed3,'string'))/2000;
Xv=str2double(get(ed4,'string'))/2000;
e=str2double(get(ed5,'string'))/100;
f=str2double(get(ed6,'string'))/100;
while strcmp(get(tb,'string'),'Stop')
yc=get(h2,'ydata');
if get(chk,'value')
plot(get(h2,'xdata'),yc,'k.')
pan on
end
Yv=Yv+a*dt;
if yc-(Yv+a*dt)*dt<=r
Yv=Yv+a*dt/(Yv+a*dt)*(yc-r);
Yv=-Yv*e;
set(h2,'ydata',r)
set(h1,'ydata',r+(r)*sin(t))
Xv=Xv*f;
else
for k=1:2
set(hb(k),'ydata',get(hb(k),'ydata')-Yv*dt)
end
end
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 门云阁.MATLAB物理计算与可视化[M].清华大学出版社,2013.
以上是关于运动学基于matlab GUI模拟小球自由落体含Matlab源码 1630期的主要内容,如果未能解决你的问题,请参考以下文章
运动学基于matlab GUI地球自转模拟含Matlab源码 1115期
运动学基于matlab GUI模拟投篮系统(角度+力度可调)含Matlab源码 1114期