基于神经网络的控制器设计与仿真
Posted fpga&matlab
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于神经网络的控制器设计与仿真相关的知识,希望对你有一定的参考价值。
这个部分,主要是通过给定模型的输入和输出,然后通过网络进行训练,得到神经网络的辨识参数。
对于网络辨识部分,其基本构架如下所示:
上述的辨识结构,通过控制对象的输入和输出的延迟分别进入F网络和G网络,然后通过网络输出和实际输出的误差对网络F和网络G进行在线学习。
具体理论论文讲的比较详细了,这里不再重复,仿真效果如下所示:
部分核心程序:
clc;
clear all;
close all;
warning off;
addpath 'func\\'
pack;
Num_In = 6;
Num_Hidden = 12;
Num_Out = 1;
load func\\result3.mat
[In,Out] = func_data(y3,y_out3);
parameter;
while Error>Err_goal & Iter < Max_iter
u_delay1 = 0;
u_delay2 = 0;
u_delay3 = 0;
u_delay4 = 0;
y_delay1 = 0;
y_delay2 = 0;
y_delay3 = 0;
y_delay4 = 0;
Err_tmp = 0;
for k=1:All_Length
Data_Delays = [y_delay1;
y_delay2;
y_delay3;
u_delay2;
u_delay3;
u_delay4];
%隐层求和
[Y_hidden(k),Hidden1G,Hidden2G,Y_hiddenG(k),Hidden1F,Hidden2F,Y_hiddenF(k)] = func_Hiddern(Data_Delays,u_delay1,Num_Hidden,G_wight_In,G_wight_Inb,G_wight_Out,G_wight_Outb,F_wight_In,F_wight_Inb,F_wight_Out,F_wight_Outb);
Err_tmp = Out(k)-Y_hidden(k);
%F和G网络
%G神经网络计算
[dg_weight_in,dg_bweight_in,dg_weight_out,dg_bweight_out] = func_G_net(Err_tmp,Out(k),In(k),Y_hidden(k),G_wight_Out,Hidden2G,Data_Delays,Y_hiddenG(k),Hidden1G,Num_Hidden,Num_In);
%F神经网络计算
[df_weight_in,df_bweight_in,df_weight_out,df_bweight_out] = func_F_net(Err_tmp,Out(k),In(k),Y_hidden(k),F_wight_Out,Hidden2F,Data_Delays,Y_hiddenG(k),Hidden1F,Num_Hidden,Num_In);
%G网络权值更新
[G_wight_In,G_wight_Out,G_wight_Inb,G_wight_Outb]=func_G_W_updata(Learn_Rate,alpha,...
G_wight_In1,G_wight_Out1,G_wight_Inb1,F_wight_Outb1,...
dg_weight_in,dg_weight_out,dg_bweight_in,dg_bweight_out,...
G_wight_Outb1,...
G_wight_In2,G_wight_Out2,G_wight_Inb2,G_wight_Outb2);
%F网络权值更新
[F_wight_In,F_wight_Out,F_wight_Inb,F_wight_Outb]=func_F_W_updata(Learn_Rate,alpha,...
G_wight_In1,F_wight_Out1,F_wight_Inb1,F_wight_Outb1,...
df_weight_in,df_weight_out,df_bweight_in,df_bweight_out,...
G_wight_In2,F_wight_Out2,F_wight_Inb2,F_wight_Outb2);
%延迟
u_delay4 = u_delay3;
u_delay3 = u_delay2;
u_delay2 = u_delay1;
u_delay1 = In(k);
y_delay4 = y_delay3;
y_delay3 = y_delay2;
y_delay2 = y_delay1;
y_delay1 = Out(k);
G_wight_In2 = G_wight_In1;
G_wight_In1 = F_wight_In;
F_wight_Out2 = F_wight_Out1;
F_wight_Out1 = F_wight_Out;
F_wight_Inb2 = F_wight_Inb1;
F_wight_Inb1 = F_wight_Inb;
F_wight_Outb2 = F_wight_Outb1;
F_wight_Outb1 = F_wight_Outb;
G_wight_In2 = G_wight_In1;
G_wight_In1 = G_wight_In;
G_wight_Out2 = G_wight_Out1;
G_wight_Out1 = G_wight_Out;
G_wight_Inb2 = G_wight_Inb1;
G_wight_Inb1 = G_wight_Inb;
G_wight_Outb2 = G_wight_Outb1;
G_wight_Outb1 = G_wight_Outb;
end
Error = sum((Out-Y_hidden).^2)/k;
Error2(Iter) = Error;
%如果当前训练误差反而增加,则放弃此次训练结果,重新训练
if (Iter > 1) & (Error2(Iter) > 1.2*Error2(Iter-1))
Iter = Iter;
Break_cnt = Break_cnt + 1;
if Break_cnt > 20
Error2(Iter) = [];
break;
end
else
Break_cnt = 0;
Iter = Iter+1;
fprintf('迭代次数:%d ',Iter);
fprintf('误差:%f',Error);
fprintf('\\n\\n');
end
end
figure;
subplot(121);
plot(Times(1:1000),Out(1:1000),'r');
hold on;
plot(Times(1:1000),Y_hidden(1:1000),'b--');
hold on;
xlabel('Times(s)');
ylabel('Out');
legend('系统输出','网络输出');
subplot(122);
semilogy(1:length(Error2),Error2,'r-o');
xlabel('Times(s)');
ylabel('Error');
grid on;
F_wight_In0 = F_wight_In;
F_wight_Out0 = F_wight_Out;
G_wight_In0 = G_wight_In;
G_wight_Out0 = G_wight_Out;
F_wight_Inb0 = F_wight_Inb;
F_wight_Outb0 = F_wight_Outb;
G_wight_Inb0 = G_wight_Inb;
G_wight_Outb0 = G_wight_Outb;
save NN_reg_signal3.mat F_wight_In0 F_wight_Out0 G_wight_In0 G_wight_Out0 F_wight_Inb0 F_wight_Outb0 G_wight_Inb0 G_wight_Outb0
A08-16
以上是关于基于神经网络的控制器设计与仿真的主要内容,如果未能解决你的问题,请参考以下文章
基于单片机家具窗帘控制系统设计基于单片机路灯教室灯光家具智能控制设计-基于单片机简易电饭煲电饭锅仿真系统设计基于单片机酒精检测控制系统仿真设计-设计资料
基于MATLAB/SIMULINK工业锅炉燃烧过程控制系统的设计与仿真
资料转发分享基于8086八路智能抢答器系统控制设计基于8086八路PT100热敏电阻温度采集基于8086步进电机定时启动设计-仿真设计资料