最小生成树算法——kruskal
Posted 爱敲代码的Harrison
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最小生成树算法——kruskal相关的知识,希望对你有一定的参考价值。
Kruskal
什么K算法,K算法就是最小生成树算法。具体说来,就是对于一张已经存在的图,如下图,
**在不破坏连通性的情况下,只留下整体权重最小的边的集合。就是边的权值加起来最小。**拿上面图举例,把权值100和50的边去掉就达到了我们的要求(所有可能性中,边的权值加起来最小的情况):
算法流程
先把所有的边根据权值由小到大排序。假设图中每个结点都是一个单独的集合,从权值小的边开始选,如果有多条权值一样的边,无论先选哪条都行,选中某条边后,看这条边两边的点有没有在同一个集合里面,没有在一个集合里,就选上这条边,并把两侧结点归在同一个集合里面;如果这条边两边的结点在一个集合里,就不选这条边。一直到整个图联通在一起。
通过上面的分析,很明显,用并查集来做是最方便的,并查集就是解决两大片联通在一起的问题。
如果用户提供有向图,那这个算法肯定没有问题,如果是无向图呢?——那就只是边集合少了一侧,整体权重是没有变化的。
我们再来明确一点,有向图和无向图是可以认为没有明确界限的,无向图就可以认为是两边都有向。所以kruskal算法无论有向无向都可以。
最后再总结一下K算法的大概步骤:
注意:不能破环连通性!!!
1)总是从权值最小的边开始考虑,依次考察权值变大的边
2)当前的边要么进入最小生成树的集合,要么丢弃
3)如果当前的边进入最小生成树的集合中不会形成环,就要当前边,
4)如果当前的边进入最小生成树的集合中会形成环,就不要当前边
5)考察完所有边之后,最小生成树的集合也得到了
package com.harrison.class11;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.PriorityQueue;
import java.util.Set;
import java.util.Stack;
import com.harrison.class11.Code01_NodeEdgeGraph.*;
public class Code05_Kruskal
public static class UnionFind
// key 某一个结点 value:某一个结点往上的结点
private HashMap<Node, Node> fatherMap;
// key 某一个集合的代表点 value:key所在集合的结点个数
private HashMap<Node, Integer> sizeMap;
public UnionFind()
fatherMap=new HashMap<Node,Node>();
sizeMap=new HashMap<Node, Integer>();
// 一开始图中每个结点自己单独成为一个集合
public void makeSets(Collection<Node> nodes)
fatherMap.clear();
sizeMap.clear();
for(Node node:nodes)
fatherMap.put(node, node);
sizeMap.put(node, 1);
public Node findFather(Node n)
Stack<Node> path=new Stack<>();
while(n!=fatherMap.get(n))
path.add(n);
n=fatherMap.get(n);
while(!path.isEmpty())
fatherMap.put(path.pop(), n);
return n;
public boolean isSameSet(Node a,Node b)
return findFather(a)==findFather(b);
public void union(Node a,Node b)
if(a==null || b==null)
return ;
Node aHead=findFather(a);
Node bHead=findFather(b);
if(aHead!=bHead)
int aSetSize=sizeMap.get(aHead);
int bSetSize=sizeMap.get(bHead);
Node big=aSetSize>=bSetSize?aHead:bHead;
Node small=big==aHead?bHead:aHead;
fatherMap.put(small, big);
sizeMap.put(big, aSetSize+bSetSize);
sizeMap.remove(small);
public static class EdgeComparator implements Comparator<Edge>
public int compare(Edge e1,Edge e2)
return e1.weight=e2.weight;
public static Set<Edge> kruskalMST(Graph graph)
UnionFind unionFind=new UnionFind();
unionFind.makeSets(graph.nodes.values());
PriorityQueue<Edge> pq=new PriorityQueue<>();
for(Edge edge:graph.edges)
pq.add(edge);
Set<Edge> ans=new HashSet<>();
while(!pq.isEmpty())
Edge edge=pq.poll();
if(!unionFind.isSameSet(edge.from, edge.to))
ans.add(edge);
unionFind.union(edge.from, edge.to);
return ans;
以上是关于最小生成树算法——kruskal的主要内容,如果未能解决你的问题,请参考以下文章