证件照制作如此简单——基于人脸检测与自动人像分割轻松制作个人证件照(C++实现)
Posted 知来者逆
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了证件照制作如此简单——基于人脸检测与自动人像分割轻松制作个人证件照(C++实现)相关的知识,希望对你有一定的参考价值。
前言
1.关于证件照,有好多种制作办法,最常见的是使用PS来做图像处理,或者下载各种证件照相关的APP,一键制作,基本的步骤是先按人脸为基准切出适合的尺寸,然后把人像给抠出来,对人像进行美化处理,然后替换上要使用的背景色,比如蓝色或红色。
2.我这里也按着上面的步骤来用代码实现,先是人脸检测,剪切照片,替换背景色,美化和修脸暂时还没有时间写完。
3.因为是考虑到要移植到移动端(安卓和ios),这里使用了ncnn做推理加速库,之前做过一些APP,加速库都选了ncnn,不管在安卓或者iOS上,性能都是不错的。
4.我的开发环境是win10, vs2019, opencv4.5, ncnn,如果要启用GPU加速,所以用到VulkanSDK,实现语言是C++。
5.先上效果图,对于背景纯度的要求不高,如果使用场景背景复杂的话,也可以完美抠图。
原始图像:
原图:
自动剪切出来的证件照:
原图:
自动剪切出来的证件照:
一.项目创建
1.使用vs2019新建一个C++项目,把OpenC和NCNN库导入,NCNN可以下载官方编译好的库,我也会在后面上传我使用的库和源码以及用到的模型。
2.如果要启用GPU推理,就要安装VulkanSDK,安装的步骤可以参考我之前的博客。
二.人脸检测
1.人脸检测这里面使用 SCRFD ,它带眼睛,鼻子,嘴角五个关键点的坐标,这个可以用做证件照参考点,人脸检测库这个也可以用libfacedetection,效果都差不多,如果是移动端最好选择SCRFD。
代码实现:
推理代码
#include "scrfd.h"
#include <string.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <ncnn/cpu.h> //安卓才用到
static inline float intersection_area(const FaceObject& a, const FaceObject& b)
cv::Rect_<float> inter = a.rect & b.rect;
return inter.area();
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects, int left, int right)
int i = left;
int j = right;
float p = faceobjects[(left + right) / 2].prob;
while (i <= j)
while (faceobjects[i].prob > p)
i++;
while (faceobjects[j].prob < p)
j--;
if (i <= j)
// swap
std::swap(faceobjects[i], faceobjects[j]);
i++;
j--;
// #pragma omp parallel sections
// #pragma omp section
if (left < j) qsort_descent_inplace(faceobjects, left, j);
// #pragma omp section
if (i < right) qsort_descent_inplace(faceobjects, i, right);
static void qsort_descent_inplace(std::vector<FaceObject>& faceobjects)
if (faceobjects.empty())
return;
qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
static void nms_sorted_bboxes(const std::vector<FaceObject>& faceobjects, std::vector<int>& picked, float nms_threshold)
picked.clear();
const int n = faceobjects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
areas[i] = faceobjects[i].rect.area();
for (int i = 0; i < n; i++)
const FaceObject& a = faceobjects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
const FaceObject& b = faceobjects[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area
if (inter_area / union_area > nms_threshold)
keep = 0;
if (keep)
picked.push_back(i);
static ncnn::Mat generate_anchors(int base_size, const ncnn::Mat& ratios, const ncnn::Mat& scales)
int num_ratio = ratios.w;
int num_scale = scales.w;
ncnn::Mat anchors;
anchors.create(4, num_ratio * num_scale);
const float cx = 0;
const float cy = 0;
for (int i = 0; i < num_ratio; i++)
float ar = ratios[i];
int r_w = round(base_size / sqrt(ar));
int r_h = round(r_w * ar); //round(base_size * sqrt(ar));
for (int j = 0; j < num_scale; j++)
float scale = scales[j];
float rs_w = r_w * scale;
float rs_h = r_h * scale;
float* anchor = anchors.row(i * num_scale + j);
anchor[0] = cx - rs_w * 0.5f;
anchor[1] = cy - rs_h * 0.5f;
anchor[2] = cx + rs_w * 0.5f;
anchor[3] = cy + rs_h * 0.5f;
return anchors;
static void generate_proposals(const ncnn::Mat& anchors, int feat_stride, const ncnn::Mat& score_blob, const ncnn::Mat& bbox_blob, const ncnn::Mat& kps_blob, float prob_threshold, std::vector<FaceObject>& faceobjects)
int w = score_blob.w;
int h = score_blob.h;
// generate face proposal from bbox deltas and shifted anchors
const int num_anchors = anchors.h;
for (int q = 0; q < num_anchors; q++)
const float* anchor = anchors.row(q);
const ncnn::Mat score = score_blob.channel(q);
const ncnn::Mat bbox = bbox_blob.channel_range(q * 4, 4);
// shifted anchor
float anchor_y = anchor[1];
float anchor_w = anchor[2] - anchor[0];
float anchor_h = anchor[3] - anchor[1];
for (int i = 0; i < h; i++)
float anchor_x = anchor[0];
for (int j = 0; j < w; j++)
int index = i * w + j;
float prob = score[index];
if (prob >= prob_threshold)
// insightface/detection/scrfd/mmdet/models/dense_heads/scrfd_head.py _get_bboxes_single()
float dx = bbox.channel(0)[index] * feat_stride;
float dy = bbox.channel(1)[index] * feat_stride;
float dw = bbox.channel(2)[index] * feat_stride;
float dh = bbox.channel(3)[index] * feat_stride;
// insightface/detection/scrfd/mmdet/core/bbox/transforms.py distance2bbox()
float cx = anchor_x + anchor_w * 0.5f;
float cy = anchor_y + anchor_h * 0.5f;
float x0 = cx - dx;
float y0 = cy - dy;
float x1 = cx + dw;
float y1 = cy + dh;
FaceObject obj;
obj.rect.x = x0;
obj.rect.y = y0;
obj.rect.width = x1 - x0 + 1;
obj.rect.height = y1 - y0 + 1;
obj.prob = prob;
if (!kps_blob.empty())
const ncnn::Mat kps = kps_blob.channel_range(q * 10, 10);
obj.landmark[0].x = cx + kps.channel(0)[index] * feat_stride;
obj.landmark[0].y = cy + kps.channel(1)[index] * feat_stride;
obj.landmark[1].x = cx + kps.channel(2)[index] * feat_stride;
obj.landmark[1].y = cy + kps.channel(3)[index] * feat_stride;
obj.landmark[2].x = cx + kps.channel(4)[index] * feat_stride;
obj.landmark[2].y = cy + kps.channel(5)[index] * feat_stride;
obj.landmark[3].x = cx + kps.channel(6)[index] * feat_stride;
obj.landmark[3].y = cy + kps.channel(7)[index] * feat_stride;
obj.landmark[4].x = cx + kps.channel(8)[index] * feat_stride;
obj.landmark[4].y = cy + kps.channel(9)[index] * feat_stride;
faceobjects.push_back(obj);
anchor_x += feat_stride;
anchor_y += feat_stride;
SCRFD::SCRFD()
int SCRFD::detect(const cv::Mat& rgb, std::vector<FaceObject>& faceobjects, float prob_threshold, float nms_threshold)
int width = rgb.cols;
int height = rgb.rows;
// insightface/detection/scrfd/configs/scrfd/scrfd_500m.py
const int target_size = 640;
// pad to multiple of 32
int w = width;
int h = height;
float scale = 1.f;
if (w > h)
scale = (float)target_size / w;
w = target_size;
h = h * scale;
else
scale = (float)target_size / h;
h = target_size;
w = w * scale;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB, width, height, w, h);
// pad to target_size rectangle
int wpad = (w + 31) / 32 * 32 - w;
int hpad = (h + 31) / 32 * 32 - h;
ncnn::Mat in_pad;
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f);
const float mean_vals[3] = 127.5f, 127.5f, 127.5f;
const float norm_vals[3] = 1/128.f, 1/128.f, 1/128.f;
in_pad.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = scrfd_net.create_extractor();
ex.input("input.1", in_pad);
std::vector<FaceObject> faceproposals;
// stride 8
ncnn::Mat score_blob, bbox_blob, kps_blob;
ex.extract("score_8", score_blob);
ex.extract("bbox_8", bbox_blob);
if (has_kps)
ex.extract("kps_8", kps_blob);
const int base_size = 16;
const int feat_stride = 8;
ncnn::Mat ratios(1);
ratios[0] = 1.f;
ncnn::Mat scales(2);
scales[0] = 1.f;
scales[1] = 2.f;
ncnn::Mat anchors = generate_anchors(base_size, ratios, scales);
std::vector<FaceObject> faceobjects32;
generate_proposals(anchors, feat_stride, score_blob, bbox_blob, kps_blob, prob_threshold, faceobjects32);
faceproposals.insert(faceproposals.end(), faceobjects32.begin(), faceobjects32.end());
// stride 16
ncnn::Mat score_blob, bbox_blob, kps_blob;
ex.extract("score_16", score_blob);
ex.extract("bbox_16", bbox_blob);
if (has_kps)
ex.extract("kps_16", kps_blob);
const int base_size = 64;
const int feat_stride = 16;
ncnn::Mat ratios(1);
ratios[0] = 1.f;
ncnn::Mat scales(2);
scales[0] = 1.f;
scales[1] = 2.f;
ncnn::Mat anchors = generate_anchors(base_size, ratios, scales);
std::vector<FaceObject> faceobjects16;
generate_proposals(anchors, feat_stride, score_blob, bbox_blob, kps_blob, prob_threshold, faceobjects16);
faceproposals.insert(faceproposals.end(), faceobjects16.begin(), faceobjects16.end());
// stride 32
ncnn::Mat score_blob,以上是关于证件照制作如此简单——基于人脸检测与自动人像分割轻松制作个人证件照(C++实现)的主要内容,如果未能解决你的问题,请参考以下文章