LeetCode 5_Longest Palindromic Substring
Posted yangykaifa
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 5_Longest Palindromic Substring相关的知识,希望对你有一定的参考价值。
LeetCode 5_Longest Palindromic Substring
题目描写叙述:
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 也即:求字符串中最长回文子串。
回文是什么我就不多少了。能够百度下!
方法一:暴力法(O(n^3))
两层循环扫描字符串的全部子串,之后推断选出的字符子串是否是回文,若是则看其长度!
代码例如以下:
class Solution { public: string longestPalindrome(string s) { // 暴力法O(n^3) int n = s.size(); if (n == 0 || n == 1) return s; int maxLength = 1; int k1 = 0, k2 = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int k = 0; int sign = 0; while (k < (j - i + 1)/2 && s[i + k] == s[j - k]) k++; if(k == (j - i + 1) / 2 ) { sign = 1; if (j - i + 1 > maxLength) { maxLength = j - i + 1; k1 = i; k2 = j; if (maxLength == n - i) return s.substr(k1,k2+1); } } } } return s.substr(k1,k2+1); }不用说,肯定超时。显然暴力法有非常大的优化空间。在推断子串的时候肯定有非常多反复的情况,能够用一个表记录已经推断的情况!
因为题目说能够假定字符串的长度不超过1000,所以建立一个table[1000][1000] 的bool表,初始化为false。如果某子串(如果 i 到 j )为回文。令table[ i ][ j ]为true。之后推断的时候先查表和更新表。代码例如以下:
class Solution { public: string longestPalindrome(string s) { int n = s.length(); if(n == 0 || n == 1) return s; int maxLength = 1; int palindromBegin = 0; bool table[1000][1000] = {false}; for(int i = 0; i < n; i++) table[i][i] = true; for (int i = 0; i < n; i++) if(s[i] == s[i + 1]) { table[i][i + 1] = true; maxLength = 2; palindromBegin = i; } for (int len = 3; len <= n ; len++) { for (int i = 0; i < n - len + 1; i++) { int j = i + len - 1; if (s[i] == s[j] && table[i + 1][j - 1] == true) { table[i][j] = true; maxLength = len; palindromBegin = i; } } } return s.substr(palindromBegin, maxLength); }
上面的方法时间复杂度为O(n^2),能够满足题目的要求。
事实上还能够考虑回文的中心点。向两边扩展(回文的中心点能够是摸个字符。也能够是某两个字符的中间),代码例如以下:
string expandAroundCenter(string s, int c1, int c2) { int l = c1, r = c2; int n = s.length(); while (l >= 0 && r <= n-1 && s[l] == s[r]) { l--; r++; } return s.substr(l+1, r-l-1); } class Solution { public: string longestPalindrome(string s) { int n = s.length(); if (n == 0) return ""; string longest = s.substr(0, 1); // a single char itself is a palindrome for (int i = 0; i < n-1; i++) { string p1 = expandAroundCenter(s, i, i); if (p1.length() > longest.length()) longest = p1; string p2 = expandAroundCenter(s, i, i+1); if (p2.length() > longest.length()) longest = p2; } return longest; } };代码的复杂度为O(n^2)。另一种说复杂度为O(n)的方法,只是我没去看,有兴趣的能够看下: http://www.cnblogs.com/bitzhuwei/p/Longest-Palindromic-Substring-Part-II.html。
以上是关于LeetCode 5_Longest Palindromic Substring的主要内容,如果未能解决你的问题,请参考以下文章
5_Longest Palindromic Substring(Manacher) --LeetCode
Leetcode_409_Longest Palindrome
5. 最长镜像子串 [leetcode 5: Longest Palindromic Substring]
5. 最长镜像子串 [leetcode 5: Longest Palindromic Substring]