R语言使用lm构建线性回归模型并将目标变量对数化实战:可视化模型预测输出与实际值对比图可视化模型的残差模型系数(coefficient)模型总结信息(summary)残差总结信息
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言使用lm构建线性回归模型并将目标变量对数化实战:可视化模型预测输出与实际值对比图可视化模型的残差模型系数(coefficient)模型总结信息(summary)残差总结信息相关的知识,希望对你有一定的参考价值。
R语言使用lm构建线性回归模型、并将目标变量对数化(log10)实战:可视化模型预测输出与实际值对比图、可视化模型的残差、模型系数(coefficient)、模型总结信息(summary)、残差总结信息(residiual summary)
目录
以上是关于R语言使用lm构建线性回归模型并将目标变量对数化实战:可视化模型预测输出与实际值对比图可视化模型的残差模型系数(coefficient)模型总结信息(summary)残差总结信息的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用lmPerm包应用于线性模型的置换方法(置换检验permutation tests)使用lm模型构建多元线性回归模型使用lmp函数生成置换检验多元线性回归模型
R语言使用lmPerm包应用于线性模型的置换方法(置换检验permutation tests)使用lm模型构建简单线性回归模型使用lmp函数生成置换检验回归分析模型
R语言使用lm函数拟合多元线性回归模型假定预测变量之间有交互作用R语言使用effects包的effect函数查看交互作用对于回归模型预测响应变量的影响
R语言使用lm函数拟合多元线性回归模型假定预测变量之间有交互作用R语言使用effects包的effect函数查看交互作用对于回归模型预测响应变量的影响