Rust语言圣经32 - 动态数组Vec

Posted 编程学院

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Rust语言圣经32 - 动态数组Vec相关的知识,希望对你有一定的参考价值。

本文节选自<<Rust语言圣经>>一书
欢迎大家加入Rust编程学院,一起学习交流:
QQ群:1009730433

动态数组Vector

动态数组类型用Vec<T>表示,事实上,在之前的章节,它的身影多次出现,我们一直没有细讲,只是简单的把它当作数组处理。

动态数组允许你存储多个值,这些值在内存中一个紧挨着另一个排列,因此访问其中某个元素的成本非常低。动态数组只能存储相同类型的元素,如果你想存储不同类型的元素,可以使用之前讲过的枚举类型或者特征对象.

总之,当我们想拥有一个列表,里面都是相同类型的数据时,动态数组将会非常有用。

创建动态数组

在Rust中,有多种方式可以创建动态数组。

Vec::new

使用Vec::new创建动态数组是最rusty的方式,它调用了Vec中的new关联函数:

let v: Vec<i32> = Vec::new();

这里, v被显式地声明了类型Vec<i32>,这是因为Rust编译器无法从Vec::new()中得到任何关于类型的暗示信息,因此也无法推导出v的具体类型,但是当你向里面增加一个元素后,一切又不同了:

let mut v = Vec::new();
v.push(1);

此时,v就无需手动声明类型,因为编译器通过v.push(1),推测出v中的元素类型是i32,因此推导出v的类型是Vec<id3>.

vec![]

还可以使用宏vec!来创建数组,与Vec::new有所不同,前者能在创建同时给予初始化值:

let v = vec![1, 2, 3];

同样,此处的v也无需标注类型,编译器只需检查它内部的元素即可自动推导出v的类型是Vec<i32>(Rust中,整数默认类型是i32,在数值类型中有详细介绍)。

更新Vector

向数组尾部添加元素,可以使用push方法:

let mut v = Vec::new();
v.push(1);

与其它类型一样,必须将v声明为mut后,才能进行修改,.

Vector与其元素共存亡

跟结构体一样,Vector类型在超出作用域范围后,会被自动删除:


    let v = vec![1, 2, 3];

    // ...
 // <- v超出作用域并在此处被删除

Vector被删除后,它内部存储的所有内容也会随之被删除。目前来看,这种解决方案简单直白,但是当vector中的元素被引用后,事情可能会没那么简单。

从Vector中读取元素

读取指定位置的元素有两种方式可选: 通过下标索引访问或者使用get方法:

let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2];
println!("第三个元素是 ", third);

match v.get(2) 
    Some(third) => println!("第三个元素是 ", third),
    None => println!("去你的第三个元素,根本没有!"),

和其它语言一样,集合类型的索引下标都是从0开始,&v[2]表示借用v中的第三个元素,最终会获得该元素的引用。而v.get(2)也是访问第三个元素,但是有所不同的是,它返回了Option<&T>,因此还需要额外的match来匹配解构出具体的值。

下标索引与.get的区别

这两种方式都能成功的读取到指定的数组元素,既然如此为什么会存在两种方法?何况.get还会增加使用复杂度,让我们通过示例说明:

let v = vec![1, 2, 3, 4, 5];

let does_not_exist = &v[100];
let does_not_exist = v.get(100);

运行以上代码,&v[100]的访问方式会导致程序无情报错退出,因为发生了数组越界访问。 但是v.get就不会,它在内部做了处理,有值的时候返回Some(T),无值的时候返回None,因此v.get的使用方式非常安全。

既然如此,为何不统一使用v.get的形式?因为实在是有些啰嗦,Rust语言的设计者和使用者在审美这方面还是相当统一的:简洁即正义,何况性能上也会有轻微的损耗。

既然有两个选择,肯定就有如何选择的问题,答案很简单,当你确保索引不会越界的时候,就用索引访问,否则用.get。例如,访问第几个数组元素并不取决于我们,而是取决于用户的输入时,用.get会非常适合,天知道那些可爱的用户会输入一个什么样的数字进来!

同时借用多个数组元素

既然涉及到借用数组元素,那么很可能会遇到同时借用多个数组元素的情况,还记得在所有权和借用章节咱们讲过的借用规则嘛?如果记得,就来看看下面的代码:)

let mut v = vec![1, 2, 3, 4, 5];

let first = &v[0];

v.push(6);

println!("The first element is: ", first);

先不运行,来推断下结果,首先first = &v[0]进行了不可变借用,v.push进行了可变借用,如果firstv.push之后不再使用,那么该段代码可以成功编译(原因见引用的作用域).

可是上面的代码中,first这个不可变借用在可变借用v.push后被使用了,那么妥妥的,编译器就会报错:

$ cargo run
Compiling collections v0.1.0 (file:///projects/collections)
error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable 无法对v进行可变借用,因此之前已经进行了不可变借用
--> src/main.rs:6:5
|
4 |     let first = &v[0];
|                  - immutable borrow occurs here // 不可变借用发生在此处
5 | 
6 |     v.push(6);
|     ^^^^^^^^^ mutable borrow occurs here // 可变借用发生在此处
7 | 
8 |     println!("The first element is: ", first);
|                                          ----- immutable borrow later used here // 不可变借用在这里被使用

For more information about this error, try `rustc --explain E0502`.
error: could not compile `collections` due to previous error

其实,按理来说,这两个引用不应该互相影响的:一个是查询元素,一个是在数组尾部插入元素,完全不相干的操作,为何编译器要这么严格呢?

原因在于:数组的大小是可变的,当老数组的大小不够用时,Rust会重新分配一块更大的内存空间,然后把老数组拷贝过来。这种情况下,之前的引用显然会指向一块无效的内存,这非常rusty - 对用户进行严格的教育。

其实想想,在长大之后,我们感激人生路上遇到过的严师益友,正是因为他们,我们才在正确的道路上不断前行,虽然在那个时候,并不能理解他们,而Rust就如那个良师益友,它不断的在纠正我们不好的编程习惯,直到某一天,你发现自己能写出一次性通过的漂亮代码时,就能明白它的良苦用心。

若读者想要更深入的了解Vec<T>,可以看看[Rustonomicon],其中从零手撸一个动态数组,非常适合深入学习

迭代遍历Vector中的元素

如果想要依次访问数组中的元素,可以使用迭代的方式去遍历数组,这种方式比用下标的方式去遍历数组更安全也更高效(每次下标访问都会触发数组边界检查):

let v = vec![1, 2, 3];
for i in &v 
    println!("", i);

也可以在迭代过程中,修改Vector中的元素:

let mut v = vec![1, 2, 3];
for i in &mut v 
    *i += 10

存储不同类型的元素

在本节开头,有讲到数组的元素必需类型相同,但是也提到了解决方案: 那就是通过使用枚举类型和特征对象来实现不同类型元素的存储。先来看看通过枚举如何实现:

#[derive(Debug)]
enum IpAddr 
    V4(String),
    V6(String)

fn main() 
    let v = vec![
        IpAddr::V4("127.0.0.1".to_string()),
        IpAddr::V6("::1".to_string())
    ];

    for ip in v 
        show_addr(ip)
    


fn show_addr(ip: IpAddr) 
    println!(":?",ip);

数组v中存储了两种不同的ip地址,但是这两种都属于IpAddr枚举类型的成员,因此可以存储在数组中。

再来看看特征对象的实现:

trait IpAddr 
    fn display(&self);


struct V4(String);
impl IpAddr for V4 
    fn display(&self) 
        println!("ipv4: :?",self.0)
    

struct V6(String);
impl IpAddr for V6 
    fn display(&self) 
        println!("ipv6: :?",self.0)
    


fn main() 
    let v: Vec<Box<dyn IpAddr>> = vec![
        Box::new(V4("127.0.0.1".to_string())),
        Box::new(V6("127.0.0.1".to_string())),
    ];

    for ip in v 
        ip.display();
    

比枚举实现要稍微复杂一些,我们为V4V6都实现了特征IpAddr,然后将它俩的实例用Box::new包裹后,存在了数组v中,需要注意的是,这里必需手动的指定类型:Vec<Box<dyn IpAddr>>,表示数组v存储的是特征IpAddr的对象,这样就实现了在数组中存储不同的类型.

在实际使用场景中,特征对象数组要比枚举数组常见很多,主要原因在于特征对象非常灵活,而编译器对枚举的限制较多,且无法动态增加类型。

最后,如果你想要了解Vector更多的用法,请参见本书的标准库解析章节:Vector常用方法

以上是关于Rust语言圣经32 - 动态数组Vec的主要内容,如果未能解决你的问题,请参考以下文章

Rust学习教程32 - 动态数组Vec

Rust学习教程32 - 动态数组Vec

Rust学习教程32 - 动态数组Vec

Rust语言圣经33 - HashMap

Rust学习教程18 - 数组

Rust学习教程18 - 数组