pytorch Alexnet 网络模型搭建

Posted 为了维护世界和平_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch Alexnet 网络模型搭建相关的知识,希望对你有一定的参考价值。

Alexnet 网络模型


网络亮点

  1. 首次使用GPU进行网络加速训练(是cpu的20-50倍速度)
  2. 使用Relu激活函数,而不是传统的sigmoid激活函数及Tanh激活函数
  3. 使用LRN局部相应归一化
  4. 在全连接层的前两层使用了Dropout随机失活神经元操作,以减少过拟合

pytorch 模型实现

import torch.nn as nn
import torch

#卷积核的数量仅仅用到论文中的一半
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        #特征提取网络
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6] 最后输出的尺寸
        )
        #分类网络
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)#展平处理
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):#卷积操作的初始化函数
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:#常量初始化
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):#线性操作的初始化
                nn.init.normal_(m.weight, 0, 0.01)# 0是均值,0.01是方差
                nn.init.constant_(m.bias, 0)

alexnet_modle = AlexNet()
print(alexnet_modle)

网络打印输出

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 48, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(48, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(192, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=4608, out_features=2048, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=2048, out_features=2048, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=2048, out_features=1000, bias=True)
  )
)

以上是关于pytorch Alexnet 网络模型搭建的主要内容,如果未能解决你的问题,请参考以下文章

AlexNet--CNN经典网络模型详解(pytorch实现)

3.2使用PyTorch搭建AlexNet并训练花分类数据集

基于pytorch搭建AlexNet神经网络用于花类识别

AlexNet网络结构学习

[Pytorch系列-39]:工具集 - torchvision搭建AlexNet/VGG/Resnet等网络并训练CFAR10分类数据

手撕 CNN 之 AlexNet(PyTorch 实战篇)