实现多级缓存的架构设计方案

Posted xhmj12

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实现多级缓存的架构设计方案相关的知识,希望对你有一定的参考价值。

来源:segmentfault.com/a/1190000017142556/


-     目录    -


-     前言    -

TMC,即“透明多级缓存(Transparent Multilevel Cache)”,是有赞 PaaS 团队给公司内应用提供的整体缓存解决方案。

TMC 在通用“分布式缓存解决方案(如 CodisProxy + Redis,如有赞自研分布式缓存系统 zanKV)”基础上,增加了以下功能:

以帮助应用层解决缓存使用过程中出现的热点访问问题。


-     为什么要做 TMC    -

使用有赞服务的电商商家数量和类型很多,商家会不定期做一些“商品秒杀”、“商品推广”活动,导致“营销活动”、“商品详情”、“交易下单”等链路应用出现缓存热点访问的情况:

为了应对以上问题,需要一个能够 自动发现热点 并 将热点缓存访问请求前置在应用层本地缓存的解决方案,这就是 TMC 产生的原因。


-     多级缓存解决方案的痛点    -

基于上述描述,我们总结了下列 多级缓存解决方案需要解决的需求痛点:

TMC 聚焦上述痛点,设计并实现了整体解决方案。以支持“热点探测”和“本地缓存”,减少热点访问时对下游分布式缓存服务的冲击,避免影响应用服务的性能及稳定性。


-     TMC整体架构    -

TMC 整体架构如上图,共分为三层:

本篇聚焦在应用层客户端的“热点探测”、“本地缓存”功能。


-     TMC 本地缓存    -

如何透明

TMC 是如何减少对业务应用系统的入侵,做到透明接入的?对于公司 Java 应用服务,在缓存客户端使用方式上分为两类:

不论使用以上那种方式,最终通过 JedisPool创建的 Jedis对象与缓存服务端代理层做请求交互。

TMC 对原生 jedis 包的 JedisPool和 Jedis类做了改造,在 JedisPool 初始化过程中集成 TMC“热点发现”+“本地缓存”功能 Hermes-SDK包的初始化逻辑。

使 Jedis客户端与缓存服务端代理层交互时先与 Hermes-SDK交互,从而完成 “热点探测”+“本地缓存”功能的透明接入。

对于 Java 应用服务,只需使用特定版本的 jedis-jar 包,无需修改代码,即可接入 TMC 使用“热点发现”+“本地缓存”功能,做到了对应用系统的最小入侵。


-     整体结构    -


-     模块划分    -

TMC 本地缓存整体结构分为如下模块:



-     基本流程    -

(1)key 值获取

(2)key 值过期

  • Java 应用调用 Jedis-Client 的 set() del() expire()接口时会导致对应 key 值失效,Jedis-Client 会同步调用 Hermes-SDK 的 invalid()方法告知其“key 值失效”事件;

  • 对于 热点 key ,Hermes-SDK 的 热点模块 会先将 key 在本地缓存的 value 值失效,以达到本地数据强一致。同时 通信模块 会异步将“key 值失效”事件通过 etcd 集群 推送给 Java 应用集群中其他 Hermes-SDK 节点;

  • 其他 Hermes-SDK 节点的 通信模块 收到 “key 值失效”事件后,会调用 热点模块 将 key 在本地缓存的 value 值失效,以达到集群数据最终一致;

(3)热点发现

  • Hermes 服务端集群 不断收集 Hermes-SDK上报的 key 访问事件,对不同业务应用集群的缓存访问数据进行周期性(3s 一次)分析计算,以探测业务应用集群中的热点 key列表;

  • 对于探测到的热点 key列表,Hermes 服务端集群 将其通过 etcd 集群 推送给不同业务应用集群的 Hermes-SDK 通信模块,通知其对热点 key列表进行本地缓存;

(4)配置读取



-     稳定性    -

TMC 本地缓存稳定性表现在以下方面:


-     一致性    -

TMC 本地缓存一致性表现在以下方面:



-     热点发现    -


整体流程

TMC 热点发现流程分为四步:

  • 热点探测:对 App,从 热 Key 排序汇总 结果中选出 TopN 的热点 Key ,推送给 Hermes-SDK;



-     数据收集    -

Hermes-SDK通过本地 rsyslog将 key 访问事件以协议格式放入 kafka,Hermes 服务端集群的每个节点消费 kafka 消息,实时获取 key 访问事件。

访问事件协议格式如下:

Hermes 服务端集群节点将收集到的 key 访问事件存储在本地内存中,内存数据结构为 Map<string,map>,对应业务含义映射为 Map<appname,map>。


-     热度滑窗    -


-     时间滑窗    -

Hermes 服务端集群节点,对每个 App 的每个 key,维护了一个 时间轮:

  • 时间轮中共 10 个 时间片,每个时间片记录当前 key 对应 3 秒时间周期的总访问次数;

  • 时间轮 10 个时间片的记录累加即表示当前 key 从当前时间向前 30 秒时间窗口内的总访问次数;


-     映射任务    -

Hermes 服务端集群节点,对每个 App 每 3 秒 生成一个 映射任务,交由节点内 “缓存映射线程池” 执行。映射任务内容如下:



-     热度汇聚    -

完成第二步“热度滑窗”后,映射任务继续对当前 App 进行“热度汇聚”工作:



-     热点探测    -

  • 在前几步,每 3 秒 一次的 映射任务 执行,对每个 App 都会产生一份当前时刻的 热度汇聚结果

  • Hermes 服务端集群 中的“热点探测”节点,对每个 App,只需周期性从其最近一份 热度汇聚结果 中取出达到热度阈值的 TopN 的 key 列表,即可得到本次探测的 热点 key 列表;

TMC 热点发现整体流程如下图:



-     特性总结    -


实时性

Hermes-SDK 基于rsyslog + kafka 实时上报 key 访问事件。映射任务3 秒一个周期完成“热度滑窗” + “热度汇聚”工作,当有 热点访问场景出现时最长 3 秒即可探测出对应 热点 key。搜索公众号互联网架构师复“2T”,送你一份惊喜礼包。

准确性

key 的热度汇聚结果由“基于时间轮实现的滑动窗口”汇聚得到,相对准确地反应当前及最近正在发生访问分布。

扩展性

Hermes 服务端集群节点无状态,节点数可基于 kafka 的 partition 数量横向扩展。

“热度滑窗” + “热度汇聚” 过程基于 App 数量,在单节点内多线程扩展。


-     实战效果    -

快手商家某次商品营销活动

有赞商家通过快手直播平台为某商品搞活动,造成该商品短时间内被集中访问产生访问热点,活动期间 TMC 记录的实际热点访问效果数据如下:

某核心应用的缓存请求&命中率曲线图:

可以看出活动期间缓存请求量及本地缓存命中量均有明显增长,本地缓存命中率达到近 80%(即应用集群中 80% 的缓存查询请求被 TMC 本地缓存拦截)。

热点缓存对应用访问的加速效果:

  • 上图为应用接口 QPS 曲线

  • 上图为应用接口 RT 曲线

可以看出活动期间应用接口的请求量有明显增长,由于 TMC 本地缓存的效果应用接口的 RT 反而出现下降。

双十一期间部分应用 TMC 效果展示:

商品域核心应用效果

活动域核心应用效果


-     功能展望    -

TMC 目前已为商品中心、物流中心、库存中心、营销活动、用户中心、网关&消息等多个核心应用模块提供服务,后续应用也在陆续接入中。

TMC 在提供“热点探测” + “本地缓存”的核心能力同时,也为应用服务提供了灵活的配置选择,应用服务可以结合实际业务情况在“热点阈值”、“热点 key 探测数量”、“热点黑白名单”维度进行自由配置以达到更好的使用效果。

1、2T架构师学习资料干货分享

2、985副教授工资曝光

3、心态崩了!税前2万4,到手1万4,年终奖扣税方式1月1日起施行~

4、雷军做程序员时写的博客,很强大!

5、人脸识别的时候,一定要穿上衣服啊!

6、清华大学:2021 元宇宙研究报告!

7、绩效被打3.25B,员工将支付宝告上了法院,判了

以上是关于实现多级缓存的架构设计方案的主要内容,如果未能解决你的问题,请参考以下文章

实现多级缓存的架构设计方案

一款牛逼的多级缓存架构设计方案

架构实战营模块五 1.多级缓存架构

微服务架构中的多级缓存设计

多级缓存:架构设计中提升性能最直接的方式

多级缓存:架构设计中提升性能最直接的方式