STL详解—— 用一棵红黑树同时封装出map和set

Posted 2021dragon

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STL详解—— 用一棵红黑树同时封装出map和set相关的知识,希望对你有一定的参考价值。

红黑树源代码

下面我们将对一棵KV模型的红黑树进行封装,同时模拟实现出C++STL库当中的map和set,所用到的红黑树源代码如下:

//枚举定义结点的颜色
enum Colour

	RED,
	BLACK
;

//红黑树结点的定义
template<class K, class V>
struct RBTreeNode

	//三叉链
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	//存储的键值对
	pair<K, V> _kv;

	//结点的颜色
	int _col; //红/黑

	//构造函数
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	
;

//红黑树的实现
template<class K, class V>
class RBTree

	typedef RBTreeNode<K, V> Node;
public:
	//构造函数
	RBTree()
		:_root(nullptr)
	

	//拷贝构造
	RBTree(const RBTree<K, V>& t)
	
		_root = _Copy(t._root);
	

	//赋值运算符重载(现代写法)
	RBTree<K, V>& operator=(RBTree<K, V> t)
	
		swap(_root, t._root);
		return *this;
	

	//析构函数
	~RBTree()
	
		_Destroy(_root);
		_root = nullptr;
	

	//查找函数
	Node* Find(const K& key)
	
		Node* cur = _root;
		while (cur)
		
			if (key < cur->_kv.first) //key值小于该结点的值
			
				cur = cur->_left; //在该结点的左子树当中查找
			
			else if (key > cur->_kv.first) //key值大于该结点的值
			
				cur = cur->_right; //在该结点的右子树当中查找
			
			else //找到了目标结点
			
				return cur; //返回该结点
			
		
		return nullptr; //查找失败
	

	//插入函数
	pair<Node*, bool> Insert(const pair<K, V>& kv)
	
		if (_root == nullptr) //若红黑树为空树,则插入结点直接作为根结点
		
			_root = new Node(kv);
			_root->_col = BLACK; //根结点必须是黑色
			return make_pair(_root, true); //插入成功
		
		//1、按二叉搜索树的插入方法,找到待插入位置
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		
			if (kv.first < cur->_kv.first) //待插入结点的key值小于当前结点的key值
			
				//往该结点的左子树走
				parent = cur;
				cur = cur->_left;
			
			else if (kv.first > cur->_kv.first) //待插入结点的key值大于当前结点的key值
			
				//往该结点的右子树走
				parent = cur;
				cur = cur->_right;
			
			else //待插入结点的key值等于当前结点的key值
			
				return make_pair(cur, false); //插入失败
			
		

		//2、将待插入结点插入到树中
		cur = new Node(kv); //根据所给值构造一个结点
		Node* newnode = cur; //记录新插入的结点(便于后序返回)
		if (kv.first < parent->_kv.first) //新结点的key值小于parent的key值
		
			//插入到parent的左边
			parent->_left = cur;
			cur->_parent = parent;
		
		else //新结点的key值大于parent的key值
		
			//插入到parent的右边
			parent->_right = cur;
			cur->_parent = parent;
		

		//3、若插入结点的父结点是红色的,则需要对红黑树进行调整
		while (parent&&parent->_col == RED)
		
			Node* grandfather = parent->_parent; //parent是红色,则其父结点一定存在
			if (parent == grandfather->_left) //parent是grandfather的左孩子
			
				Node* uncle = grandfather->_right; //uncle是grandfather的右孩子
				if (uncle&&uncle->_col == RED) //情况1:uncle存在且为红
				
					//颜色调整
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				
				else //情况2+情况3:uncle不存在 + uncle存在且为黑
				
					if (cur == parent->_left)
					
						RotateR(grandfather); //右单旋

						//颜色调整
						grandfather->_col = RED;
						parent->_col = BLACK;
					
					else //cur == parent->_right
					
						RotateLR(grandfather); //左右双旋

						//颜色调整
						grandfather->_col = RED;
						cur->_col = BLACK;
					
					break; //子树旋转后,该子树的根变成了黑色,无需继续往上进行处理
				
			
			else //parent是grandfather的右孩子
			
				Node* uncle = grandfather->_left; //uncle是grandfather的左孩子
				if (uncle&&uncle->_col == RED) //情况1:uncle存在且为红
				
					//颜色调整
					uncle->_col = parent->_col = BLACK;
					grandfather->_col = RED;

					//继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				
				else //情况2+情况3:uncle不存在 + uncle存在且为黑
				
					if (cur == parent->_left)
					
						RotateRL(grandfather); //右左双旋

						//颜色调整
						cur->_col = BLACK;
						grandfather->_col = RED;
					
					else //cur == parent->_right
					
						RotateL(grandfather); //左单旋

						//颜色调整
						grandfather->_col = RED;
						parent->_col = BLACK;
					
					break; //子树旋转后,该子树的根变成了黑色,无需继续往上进行处理
				
			
		
		_root->_col = BLACK; //根结点的颜色为黑色(可能被情况一变成了红色,需要变回黑色)
		return make_pair(newnode, true); //插入成功
	

	//删除函数
	bool Erase(const K& key)
	
		//用于遍历二叉树
		Node* parent = nullptr;
		Node* cur = _root;
		//用于标记实际的待删除结点及其父结点
		Node* delParentPos = nullptr;
		Node* delPos = nullptr;
		while (cur)
		
			if (key < cur->_kv.first) //所给key值小于当前结点的key值
			
				//往该结点的左子树走
				parent = cur;
				cur = cur->_left;
			
			else if (key > cur->_kv.first) //所给key值大于当前结点的key值
			
				//往该结点的右子树走
				parent = cur;
				cur = cur->_right;
			
			else //找到了待删除结点
			
				if (cur->_left == nullptr) //待删除结点的左子树为空
				
					if (cur == _root) //待删除结点是根结点
					
						_root = _root->_right; //让根结点的右子树作为新的根结点
						if (_root)
						
							_root->_parent = nullptr;
							_root->_col = BLACK; //根结点为黑色
						
						delete cur; //删除原根结点
						return true;
					
					else
					
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					
					break; //进行红黑树的调整以及结点的实际删除
				
				else if (cur->_right == nullptr) //待删除结点的右子树为空
				
					if (cur == _root) //待删除结点是根结点
					
						_root = _root->_left; //让根结点的左子树作为新的根结点
						if (_root)
						
							_root->_parent = nullptr;
							_root->_col = BLACK; //根结点为黑色
						
						delete cur; //删除原根结点
						return true;
					
					else
					
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					
					break; //进行红黑树的调整以及结点的实际删除
				
				else //待删除结点的左右子树均不为空
				
					//替换法删除
					//寻找待删除结点右子树当中key值最小的结点作为实际删除结点
					Node* minParent = cur;
					Node* minRight = cur->_right;
					while (minRight->_left)
					
						minParent = minRight;
						minRight = minRight->_left;
					
					cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的key
					cur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的value
					delParentPos = minParent; //标记实际删除结点的父结点
					delPos = minRight; //标记实际删除的结点
					break; //进行红黑树的调整以及结点的实际删除
				
			
		
		if (delPos == nullptr) //delPos没有被修改过,说明没有找到待删除结点
		
			return false;
		

		//记录待删除结点及其父结点(用于后续实际删除)
		Node* del = delPos;
		Node* delP = delParentPos;

		//调整红黑树
		if (delPos->_col == BLACK) //删除的是黑色结点
		
			if (delPos->_left) //待删除结点有一个红色的左孩子(不可能是黑色)
			
				delPos->_left->_col = BLACK; //将这个红色的左孩子变黑即可
			
			else if (delPos->_right) //待删除结点有一个红色的右孩子(不可能是黑色)
			
				delPos->_right->_col = BLACK; //将这个红色的右孩子变黑即可
			
			else //待删除结点的左右均为空
			
				while (delPos != _root) //可能一直调整到根结点
				
					if (delPos == delParentPos->_left) //待删除结点是其父结点的左孩子
					
						Node* brother = delParentPos->_right; //兄弟结点是其父结点的右孩子
						//情况一:brother为红色
						if (brother->_col == RED)
						
							delParentPos->_col = RED;
							brother->_col = BLACK;
							RotateL(delParentPos);
							//需要继续处理
							brother = delParentPos->_right; //更新brother(否则在本循环中执行其他情况的代码会出错)
						
						//情况二:brother为黑色,且其左右孩子都是黑色结点或为空
						if (((brother->_left == nullptr) || (brother->_left->_col == BLACK))
							&& ((brother->_right == nullptr) || (brother->_right->_col == BLACK)))
						
							brother->_col = RED;
							if (delParentPos->_col == RED)
							
								delParentPos->_col = BLACK;
								break;
							
							//需要继续处理
							delPos = delParentPos;
							delParentPos = delPos->_parent;
						
						else
						
							//情况三:brother为黑色,且其左孩子是红色结点,右孩子是黑色结点或为空
							if ((brother->_right == nullptr) || (brother->_right->_col == BLACK))
							
								brother->_left->_col = BLACK;
								brother->_col = RED;
								RotateR(brother);
								//需要继续处理
								brother = delParentPos->_right; //更新brother(否则执行下面情况四的代码会出错)
							
							//情况四:brother为黑色,且其右孩子是红色结点
							brother->_col = delParentPos->_col;
							delParentPos->_col = BLACK;
							brother->_right->_col = BLACK;
							RotateL(delParentPos);
							break; //情况四执行完毕后调整一定结束
						
					
					else //delPos == delParentPos->_right //待删除结点是其父结点的左孩子
					
						Node* brother = delParentPos->_left; //兄弟结点是其父结点的左孩子
						//情况一:brother为红色
						if (brother->_col == RED) //brother为红色
						
							delParentPos->_col = RED;
							brother->_col = BLACK;
							RotateR(delParentPos);
							//需要继续处理
							brother = delParentPos->_left; //更新brother(否则在本循环中执行其他情况的代码会出错)
						
						//情况二:brother为黑色,且其左右孩子都是黑色结点或为空
						if (((brother->_left == nullptr) || (brother->_left->_col == BLACK))
							&& ((brother->_right == nullptr) || (brother->_right->_col == BLACK)))
						
							brother->_col = RED;
							if (delParentPos->_col == RED)
							
								delParentPos->_col = BLACK;
								break;
							
							//需要继续处理
							delPos = delParentPos;
							delParentPos = delPos->_parent;
						
						else
						
							//情况三:brother为黑色,且其右孩子是红色结点,左孩子是黑色结点或为空
							if ((brother->_left == nullptr) || (brother->_left->_col == BLACK))
							
								brother->_right->_col = BLACK;
								brother->_col = RED;
								RotateL(brother);
								//需要继续处理
								brother = delParentPos->_left; //更新brother(否则执行下面情况四的代码会出错)
							
							//情况四:brother为黑色,且其左孩子是红色结点
							brother->_col = delParentPos->_col;
							delParentPos->_col = BLACK;
							brother->_left->_col = BLACK;
							RotateR(delParentPos);
							break; //情况四执行完毕后调整一定结束
						
					
				
			
		
		//进行实际删除
		if (del->_left == nullptr) //实际删除结点的左子树为空
		
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			
				delP->_left = del->_right;
				if (del->_right)
					del->_right->_parent = delP;
			
			else //实际删除结点是其父结点的右孩子
			
				delP->_right = del->_right;
				if (del->_right)
					del->_right->_parent = delP;
			
		
		else //实际删除结点的右子树为空
		
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			
				delP->_left = del->_left;
				if (del->_left)
					del->_left->_parent = delP;
			
			else //实际删除结点是其父结点的右孩子
			
				delP->_right = del->_left;
				if (del->_left)
					del->_left->_parent = delP;
			
		
		delete del; //实际删除结点
		return true;
	
	
private:
	//拷贝树
	Node* _Copy(Node* root)
	
		if (root == nullptr)
		
			return nullptr;
		
		Node* copyNode = new Node(root->_kv);
		copyNode->_left = _Copy(root->_left);
		copyNode->_right = _Copy(root->_right);
		return copyNode;
	

	//析构函数子函数
	void _Destroy(Node* root)
	
		if (root == nullptr)
		
			return;
		
		_Destroy(root->_left);
		_Destroy(root->_right);
		delete root;
	

	//左单旋
	void RotateL(Node* parent)
	
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* parentParent = parent->_parent;

		//建立subRL与parent之间的联系
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		//建立parent与subR之间的联系
		subR->_left = parent;
		parent->_parent = subR;

		//建立subR与parent

以上是关于STL详解—— 用一棵红黑树同时封装出map和set的主要内容,如果未能解决你的问题,请参考以下文章

加入两棵红黑树的最佳方式

[C/C++]详解STL容器9-基于红黑树模拟实现map和set

[C/C++]详解STL容器9-基于红黑树模拟实现map和set

[C/C++]详解STL容器9-基于红黑树模拟实现map和set

[C/C++]详解STL容器9-基于红黑树模拟实现map和set

红黑树旋转