Python数据分析与可视化NumPy数值计算(实训一)

Posted ZSYL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python数据分析与可视化NumPy数值计算(实训一)相关的知识,希望对你有一定的参考价值。

1.导入模块

import  numpy as np
import csv

2.获取数据

iris_data = []
with open("data//iris.csv") as csvfile:
    # 使用csv.reader读取csvfile中的文件
    csv_reader = csv.reader(csvfile)  
    # 读取第一行每一列的标题
    birth_header = next(csv_reader)  
    # 将csv 文件中的数据保存到birth_data中
    for row in csv_reader:  
        iris_data.append(row)
iris_data
[['1', '5.1', '3.5', '1.4', '0.2', 'setosa'],
 ['2', '4.9', '3', '1.4', '0.2', 'setosa'],
 ['3', '4.7', '3.2', '1.3', '0.2', 'setosa'],
 ['4', '4.6', '3.1', '1.5', '0.2', 'setosa'],
 ['5', '5', '3.6', '1.4', '0.2', 'setosa'],
 ['6', '5.4', '3.9', '1.7', '0.4', 'setosa'],
 ['7', '4.6', '3.4', '1.4', '0.3', 'setosa'],
 ['8', '5', '3.4', '1.5', '0.2', 'setosa'],
 ['9', '4.4', '2.9', '1.4', '0.2', 'setosa'],
 ['10', '4.9', '3.1', '1.5', '0.1', 'setosa'],
 ['11', '5.4', '3.7', '1.5', '0.2', 'setosa'],
 ['12', '4.8', '3.4', '1.6', '0.2', 'setosa'],
 ['13', '4.8', '3', '1.4', '0.1', 'setosa'],
 ['14', '4.3', '3', '1.1', '0.1', 'setosa'],
 ['15', '5.8', '4', '1.2', '0.2', 'setosa'],
 ['16', '5.7', '4.4', '1.5', '0.4', 'setosa'],
 ['17', '5.4', '3.9', '1.3', '0.4', 'setosa'],
 ['18', '5.1', '3.5', '1.4', '0.3', 'setosa'],
 ['19', '5.7', '3.8', '1.7', '0.3', 'setosa'],
 ['20', '5.1', '3.8', '1.5', '0.3', 'setosa'],
 ['21', '5.4', '3.4', '1.7', '0.2', 'setosa'],
 ['22', '5.1', '3.7', '1.5', '0.4', 'setosa'],
 ['23', '4.6', '3.6', '1', '0.2', 'setosa'],
 ['24', '5.1', '3.3', '1.7', '0.5', 'setosa'],
 ['25', '4.8', '3.4', '1.9', '0.2', 'setosa'],
 ['26', '5', '3', '1.6', '0.2', 'setosa'],
 ['27', '5', '3.4', '1.6', '0.4', 'setosa'],
 ['28', '5.2', '3.5', '1.5', '0.2', 'setosa'],
 ['29', '5.2', '3.4', '1.4', '0.2', 'setosa'],
 ['30', '4.7', '3.2', '1.6', '0.2', 'setosa'],
 ['31', '4.8', '3.1', '1.6', '0.2', 'setosa'],
 ['32', '5.4', '3.4', '1.5', '0.4', 'setosa'],
 ['33', '5.2', '4.1', '1.5', '0.1', 'setosa'],
 ['34', '5.5', '4.2', '1.4', '0.2', 'setosa'],
 ['35', '4.9', '3.1', '1.5', '0.2', 'setosa'],
 ['36', '5', '3.2', '1.2', '0.2', 'setosa'],
 ['37', '5.5', '3.5', '1.3', '0.2', 'setosa'],
 ['38', '4.9', '3.6', '1.4', '0.1', 'setosa'],
 ['39', '4.4', '3', '1.3', '0.2', 'setosa'],
 ['40', '5.1', '3.4', '1.5', '0.2', 'setosa'],
 ['41', '5', '3.5', '1.3', '0.3', 'setosa'],
 ['42', '4.5', '2.3', '1.3', '0.3', 'setosa'],
 ['43', '4.4', '3.2', '1.3', '0.2', 'setosa'],
 ['44', '5', '3.5', '1.6', '0.6', 'setosa'],
 ['45', '5.1', '3.8', '1.9', '0.4', 'setosa'],
 ['46', '4.8', '3', '1.4', '0.3', 'setosa'],
 ['47', '5.1', '3.8', '1.6', '0.2', 'setosa'],
 ['48', '4.6', '3.2', '1.4', '0.2', 'setosa'],
 ['49', '5.3', '3.7', '1.5', '0.2', 'setosa'],
 ['50', '5', '3.3', '1.4', '0.2', 'setosa'],
 ['51', '7', '3.2', '4.7', '1.4', 'versicolor'],
 ['52', '6.4', '3.2', '4.5', '1.5', 'versicolor'],
 ['53', '6.9', '3.1', '4.9', '1.5', 'versicolor'],
 ['54', '5.5', '2.3', '4', '1.3', 'versicolor'],
 ['55', '6.5', '2.8', '4.6', '1.5', 'versicolor'],
 ['56', '5.7', '2.8', '4.5', '1.3', 'versicolor'],
 ['57', '6.3', '3.3', '4.7', '1.6', 'versicolor'],
 ['58', '4.9', '2.4', '3.3', '1', 'versicolor'],
 ['59', '6.6', '2.9', '4.6', '1.3', 'versicolor'],
 ['60', '5.2', '2.7', '3.9', '1.4', 'versicolor'],
 ['61', '5', '2', '3.5', '1', 'versicolor'],
 ['62', '5.9', '3', '4.2', '1.5', 'versicolor'],
 ['63', '6', '2.2', '4', '1', 'versicolor'],
 ['64', '6.1', '2.9', '4.7', '1.4', 'versicolor'],
 ['65', '5.6', '2.9', '3.6', '1.3', 'versicolor'],
 ['66', '6.7', '3.1', '4.4', '1.4', 'versicolor'],
 ['67', '5.6', '3', '4.5', '1.5', 'versicolor'],
 ['68', '5.8', '2.7', '4.1', '1', 'versicolor'],
 ['69', '6.2', '2.2', '4.5', '1.5', 'versicolor'],
 ['70', '5.6', '2.5', '3.9', '1.1', 'versicolor'],
 ['71', '5.9', '3.2', '4.8', '1.8', 'versicolor'],
 ['72', '6.1', '2.8', '4', '1.3', 'versicolor'],
 ['73', '6.3', '2.5', '4.9', '1.5', 'versicolor'],
 ['74', '6.1', '2.8', '4.7', '1.2', 'versicolor'],
 ['75', '6.4', '2.9', '4.3', '1.3', 'versicolor'],
 ['76', '6.6', '3', '4.4', '1.4', 'versicolor'],
 ['77', '6.8', '2.8', '4.8', '1.4', 'versicolor'],
 ['78', '6.7', '3', '5', '1.7', 'versicolor'],
 ['79', '6', '2.9', '4.5', '1.5', 'versicolor'],
 ['80', '5.7', '2.6', '3.5', '1', 'versicolor'],
 ['81', '5.5', '2.4', '3.8', '1.1', 'versicolor'],
 ['82', '5.5', '2.4', '3.7', '1', 'versicolor'],
 ['83', '5.8', '2.7', '3.9', '1.2', 'versicolor'],
 ['84', '6', '2.7', '5.1', '1.6', 'versicolor'],
 ['85', '5.4', '3', '4.5', '1.5', 'versicolor'],
 ['86', '6', '3.4', '4.5', '1.6', 'versicolor'],
 ['87', '6.7', '3.1', '4.7', '1.5', 'versicolor'],
 ['88', '6.3', '2.3', '4.4', '1.3', 'versicolor'],
 ['89', '5.6', '3', '4.1', '1.3', 'versicolor'],
 ['90', '5.5', '2.5', '4', '1.3', 'versicolor'],
 ['91', '5.5', '2.6', '4.4', '1.2', 'versicolor'],
 ['92', '6.1', '3', '4.6', '1.4', 'versicolor'],
 ['93', '5.8', '2.6', '4', '1.2', 'versicolor'],
 ['94', '5', '2.3', '3.3', '1', 'versicolor'],
 ['95', '5.6', '2.7', '4.2', '1.3', 'versicolor'],
 ['96', '5.7', '3', '4.2', '1.2', 'versicolor'],
 ['97', '5.7', '2.9', '4.2', '1.3', 'versicolor'],
 ['98', '6.2', '2.9', '4.3', '1.3', 'versicolor'],
 ['99', '5.1', '2.5', '3', '1.1', 'versicolor'],
 ['100', '5.7', '2.8', '4.1', '1.3', 'versicolor'],
 ['101', '6.3', '3.3', '6', '2.5', 'virginica'],
 ['102', '5.8', '2.7', '5.1', '1.9', 'virginica'],
 ['103', '7.1', '3', '5.9', '2.1', 'virginica'],
 ['104', '6.3', '2.9', '5.6', '1.8', 'virginica'],
 ['105', '6.5', '3', '5.8', '2.2', 'virginica'],
 ['106', '7.6', '3', '6.6', '2.1', 'virginica'],
 ['107', '4.9', '2.5', '4.5', '1.7', 'virginica'],
 ['108', '7.3', '2.9', '6.3', '1.8', 'virginica'],
 ['109', '6.7', '2.5', '5.8', '1.8', 'virginica'],
 ['110', '7.2', '3.6', '6.1', '2.5', 'virginica'],
 ['111', '6.5', '3.2', '5.1', '2', 'virginica'],
 ['112', '6.4', '2.7', '5.3', '1.9', 'virginica'],
 ['113', '6.8', '3', '5.5', '2.1', 'virginica'],
 ['114', '5.7', '2.5', '5', '2', 'virginica'],
 ['115', '5.8', '2.8', '5.1', '2.4', 'virginica'],
 ['116', '6.4', '3.2', '5.3', '2.3', 'virginica'],
 ['117', '6.5', '3', '5.5', '1.8', 'virginica'],
 ['118', '7.7', '3.8', '6.7', '2.2', 'virginica'],
 ['119', '7.7', '2.6', '6.9', '2.3', 'virginica'],
 ['120', '6', '2.2', '5', '1.5', 'virginica'],
 ['121', '6.9', '3.2', '5.7', '2.3', 'virginica'],
 ['122', '5.6', '2.8', '4.9', '2', 'virginica'],
 ['123', '7.7', '2.8', '6.7', '2', 'virginica'],
 ['124', '6.3', '2.7', '4.9', '1.8', 'virginica'],
 ['125', '6.7', '3.3', '5.7', '2.1', 'virginica'],
 ['126', '7.2', '3.2', '6', '1.8', 'virginica'],
 ['127', '6.2', '2.8', '4.8', '1.8', 'virginica'],
 ['128', '6.1', '3', '4.9', '1.8', 'virginica'],
 ['129', '6.4', '2.8', '5.6', '2.1', 'virginica'],
 ['130', '7.2', '3', '5.8', '1.6', 'virginica'],
 ['131', '7.4', '2.8', '6.1', '1.9', 'virginica'],
 ['132', '7.9', '3.8', '6.4', '2', 'virginica'],
 ['133', '6.4', '2.8', '5.6', '2.2', 'virginica'],
 ['134', '6.3', '2.8', '5.1', '1.5', 'virginica'],
 ['135', '6.1', '2.6', '5.6', '1.4', 'virginica'],
 ['136', '7.7', '3', '6.1', '2.3', 'virginica'],
 ['137', '6.3', '3.4', '5.6', '2.4', 'virginica'],
 ['138', '6.4', '3.1', '5.5', '1.8', 'virginica'],
 ['139', '6', '3', '4.8', '1.8', 'virginica'],
 ['140', '6.9', '3.1', '5.4', '2.1', 'virginica'],
 ['141', '6.7', '3.1', '5.6', '2.4', 'virginica'],
 ['142', '6.9', '3.1', '5.1', '2.3', 'virginica'],
 ['143', '5.8', '2.7', '5.1', '1.9', 'virginica'],
 ['144', '6.8', '3.2', '5.9', '2.3', 'virginica'],
 ['145', '6.7', '3.3', '5.7', '2.5', 'virginica'],
 ['146', '6.7', '3', '5.2', '2.3', 'virginica'],
 ['147', '6.3', '2.5', '5', '1.9', 'virginica'],
 ['148', '6.5', '3', '5.2', '2', 'virginica'],
 ['149', '6.2', '3.4', '5.4', '2.3', 'virginica'],
 ['150', '5.9', '3', '5.1', '1.8', 'virginica']]

3.数据清理:去掉索引号

iris_list = []
for row in iris_data:
    iris_list.append(tuple(row[1:]))
iris_list
[('5.1', '3.5', '1.4', '0.2', 'setosa'),
 ('4.9', '3', '1.4', '0.2', 'setosa'),
 ('4.7', '3.2', '1.3', '0.2', 'setosa'),
 ('4.6', '3.1', '1.5', '0.2', 'setosa'),
 ('5', '3.6', '1.4', '0.2', 'setosa'),
 ('5.4', '3.9', '1.7', '0.4', 'setosa'),
 ('4.6', '3.4', '1.4', '0.3', 'setosa'),
 ('5', '3.4', '1.5', '0.2', 'setosa'),
 ('4.4', '2.9', '1.4', '0.2', 'setosa'),
 ('4.9', '3.1', '1.5', '0.1', 'setosa'),
 ('5.4', '3.7', '1.5', '0.2', 'setosa'),
 ('4.8', '3.4', '1.6', '0.2', 'setosa'),
 ('4.8', '3', '1.4', '0.1', 'setosa'),
 ('4.3', '3', '1.1', '0.1', 'setosa'),
 ('5.8', '4', '1.2', '0.2', 'setosa'),
 ('5.7', '4.4', '1.5', '0.4', 'setosa'),
 ('5.4', '3.9', '1.3', '0.4', 'setosa'),
 ('5.1', '3.5', '1.4', '0.3', 'setosa'),
 ('5.7', '3.8', '1.7', '0.3', 'setosa'),
 ('5.1', '3.8', '1.5', '0.3', 'setosa'),
 ('5.4', '3.4', '1.7', '0.2', 'setosa'),
 ('5.1', '3.7', '1.5', '0.4', 'setosa'),
 ('4.6', '3.6', '1', '0.2', 'setosa'),
 ('5.1', '3.3', '1.7', '0.5', 'setosa'),
 ('4.8', '3.4', '1.9', '0.2', 'setosa'),
 ('5', '3', '1.6', '0.2', 'setosa'),
 ('5', '3.4', '1.6', '0.4', 'setosa'),
 ('5.2', '3.5', '1.5', '0.2', 'setosa'),
 ('5.2', '3.4', '1.4', '0.2', 'setosa'),
 ('4.7', '3.2', '1.6', '0.2', 'setosa'),
 ('4.8', '3.1', '1.6', '0.2', 'setosa'),
 ('5.4', '3.4', '1.5', '0.4', 'setosa'),
 ('5.2', '4.1', '1.5', '0.1', 'setosa'),
 ('5.5', '4.2', '1.4', '0.2', 'setosa'),
 ('4.9', '3.1', '1.5', '0.2', 'setosa'),
 ('5', '3.2', '1.2', '0.2', 'setosa'),
 ('5.5', '3.5', '1.3', '0.2', 'setosa'),
 ('4.9', '3.6', '1.4', '0.1', 'setosa'),
 ('4.4', '3', '1.3', '0.2', 'setosa'),
 ('5.1', '3.4', '1.5', '0.2', 'setosa'),
 ('5', '3.5', '1.3', '0.3', 'setosa'),
 ('4.5', '2.3', '1.3', '0.3', 'setosa'),
 ('4.4', '3.2', '1.3', '0.2', 'setosa'),
 ('5', '3.5', '1.6', '0.6', 'setosa'),
 ('5.1', '3.8', '1.9', '0.4', 'setosa'),
 ('4.8', '3', '1.4', '0.3', 'setosa'),
 ('5.1', '3.8', '1.6', '0.2', 'setosa'),
 ('4.6', '3.2', '1.4', '0.2', 'setosa'),
 ('5.3', '3.7', '1.5', '0.2', 'setosa'),
 ('5', '3.3', '1.4', '0.2', 'setosa'),
 ('7', '3.2', '4.7', '1.4', 'versicolor'),
 ('6.4', '3.2', '4.5', '1.5', 'versicolor'),
 ('6.9', '3.1', '4.9', '1.5', 'versicolor'),
 ('5.5', '2.3', '4', '1.3', 'versicolor'),
 ('6.5', '2.8', '4.6', '1.5', 'versicolor'),
 ('5.7', '2.8', '4.5', '1.3', 'versicolor'),
 ('6.3', '3.3', '4.7', '1.6', 'versicolor'),
 ('4.9', '2.4', '3.3', '1', 'versicolor'),
 ('6.6', '2.9', '4.6', '1.3', 'versicolor'),
 ('5.2', '2.7', '3.9', '1.4', 'versicolor'),
 ('5', '2', '3.5', '1', 'versicolor'),
 ('5.9', '3', '4.2', '1.5', 'versicolor'),
 ('6', '2.2', '4', '1', 'versicolor'),
 ('6.1', '2.9', '4.7', '1.4', 'versicolor'),
 ('5.6', '2.9', '3.6', '1.3', 'versicolor'),
 ('6.7', '3.1', '4.4', '1.4', 'versicolor'),
 ('5.6', '3', '4.5', '1.5', 'versicolor'),
 ('5.8', '2.7', '4.1', '1', 'versicolor'),
 ('6.2', '2.2', '4.5', '1.5', 'versicolor'),
 ('5.6', '2.5', '3.9', '1.1', 'versicolor'),
 ('5.9', '3.2', '4.8', '1.8', 'versicolor'),
 ('6.1', '2.8', '4', '1.3', 'versicolor'),
 ('6.3', '2.5', '4.9', '1.5', 'versicolor'),
 ('6.1', '2.8', '4.7', '1.2', 'versicolor'),
 ('6.4', '2.9', '4.3', '1.3', 'versicolor'),
 ('6.6', '3', '4.4', '1.4', 'versicolor'),
 ('6.8', '2.8', '4.8', '1.4', 'versicolor'),
 ('6.7', '3', '5', '1.7', 'versicolor'),
 ('6', '2.9', '4.5', '1.5', 'versicolor'),
 ('5.7', '2.6', '3.5', '1', 'versicolor'),
 ('5.5', '2.4', '3.8', '1.1', 'versicolor'),
 ('5.5', '2.4', '3.7', '1', 'versicolor'),
 ('5.8', '2.7', '3.9', '1.2', 'versicolor'),
 ('6', '2.7', '5.1', '1.6', 'versicolor'),
 ('5.4', '3', '4.5', '1.5', 'versicolor'),
 ('6', '3.4', '4.5', '1.6', 'versicolor'),
 ('6.7', '3.1', '4.7', '1.5', 'versicolor'),
 ('6.3', '2.3', '4.4', '1.3', 'versicolor'),
 ('5.6', '3', '4.1', '1.3', 'versicolor'),
 ('5.5', '2.5', '4', '1.3', 'versicolor'),
 ('5.5', '2.6', '4.4', '1.2', 'versicolor'),
 ('6.1', '3', '4.6', '1.4', 'versicolor'),
 ('5.8', '2.6', '4', '1.2', 'versicolor'),
 ('5', '2.3', '3.3', '1', 'versicolor'),
 ('5.6', '2.7', '4.2', '1.3', 'versicolor'),
 ('5.7', '3', '4.2', '1.2', 'versicolor'),
 ('5.7', '2.9', '4.2', '1.3', 'versicolor'),
 ('6.2', '2.9', '4.3', '1.3', 'versicolor'),
 ('5.1', '2.5', '3', '1.1', 'versicolor'),
 ('5.7', '2.8', '4.1', '1.3', 'versicolor'),
 ('6.3', '3.3', '6', '2.5', 'virginica'),
 ('5.8', '2.7', '5.1', '1.9', 'virginica'),
 ('7.1', '3', '5.9', '2.1', 'virginica'),
 ('6.3', '2.9', '5.6', '1.8', 'virginica'),
 ('6.5', '3', '5.8', '2.2', 'virginica'),
 ('7.6', '3', '6.6', '2.1', 'virginica'),
 ('4.9', '2.5', '4.5', '1.7', 'virginica'),
 ('7.3', '2.9', '6.3', '1.8', 'virginica'),
 ('6.7', '2.5', '5.8', '1.8', 'virginica'),
 ('7.2', '3.6', '6.1', '2.5', 'virginica'),
 ('6.5', '3.2', '5.1', '2', 'virginica'),
 ('6.4', '2.7', '5.3', '1.9', 'virginica'),
 ('6.8', '3', '5.5', '2.1', 'virginica'),
 ('5.7', '2.5', '5', '2', 'virginica'),
 ('5.8', '2.8', '5.1', '2.4', 'virginica'),
 ('6.4', '3.2', '5.3', '2.3', 'virginica'),
 ('6.5', '3', '5.5', '1.8', 'virginica'),
 ('7.7', '3.8', '6.7', '2.2', 'virginica'),
 ('7.7', '2.6', '6.9', '2.3', 'virginica'),
 ('6', '2.2', '5', '1.5', 'virginica'),
 ('6.9', '3.2', '5.7', '2.3', 'virginica'),
 ('5.6', '2.8', '4.9', '2', 'virginica'),
 ('7.7', '2.8', '6.7', '2', 'virginica'),
 ('6.3', '2.7', '4.9', '1.8', 'virginica'),
 ('6.7', '3.3', '5.7', '2.1', 'virginica'),
 ('7.2', '3.2', '6', '1.8', 'virginica'),
 ('6.2', '2.8', '4.8', '1.8', 'virginica'),
 ('6.1', '3', '4.9', '1.8', 'virginica'),
 ('6.4', '2.8', '5.6', '2.1', 'virginica'),
 ('7.2', '3', '5.8', '1.6', 'virginica'),
 ('7.4', '2.8', '6.1', '1.9', 'virginica'),
 ('7.9', '3.8', '6.4', '2', 'virginica'),
 ('6.4', '2.8', '5.6', '2.2', 'virginica'),
 ('6.3', '2.8', '5.1', '1.5', 'virginica'),
 ('6.1', '2.6', '5.6', '1.4', 'virginica'),
 ('7.7', '3', '6.1', '2.3', 'virginica'),
 ('6.3', '3.4', '5.6', '2.4', 'virginica'),
 ('6.4', '3.1', '5.5', '1.8', 'virginica'),
 ('6', '3', '4.8', '1.8', 'virginica'),
 ('6.9', '3.1', '5.4', '2.1', 'virginica'),
 ('6.7', '3.1', '5.6', '2.4', 'virginica'),
 ('6.9', '3.1', '5.1', '2.3', 'virginica'),
 ('5.8', '2.7', '5.1', '1.9', 'virginica'),
 ('6.8', '3.2', '5.9', '2.3', 'virginica'),
 ('6.7', '3.3', '5.7', '2.5', 'virginica'),
 ('6.7', '3', '5.2', '2.3', 'virginica'),
 ('6.3', '2.5', '5', '1.9', 'virginica'),
 ('6.5', '3', '5.2', '2', 'virginica'),
 ('6.2', '3.4', '5.4', '2.3', 'virginica'),
 ('5.9', '3', '5.1', '1.8', 'virginica')]

4.数据统计

(1)创建数据类型

datatype = np.dtype([("Sepal.Length", np.str_, 40), ("Sepal.Width", np.str_, 40), 
                     ("Petal.Length",np.str_, 40), ("Petal.Width", np.str_, 40),("Species",np.str_, 40)])
print(datatype)
[('Sepal.Length', '<U40'), ('Sepal.Width', '<U40'), ('Petal.Length', '<U40'), ('Petal.Width', '<U40'), ('Species', '<U40')]

(2)创建二维数组

iris_data = np.array(iris_list,dtype = datatype)
iris_data
array([('5.1', '3.5', '1.4', '0.2', 'setosa'),
       ('4.9', '3', '1.4', '0.2', 'setosa'),
       ('4.7', '3.2', '1.3', '0.2', 'setosa'),
       ('4.6', '3.1', '1.5', '0.2', 'setosa'),
       ('5', '3.6', '1.4', '0.2', 'setosa'),
       ('5.4', '3.9', '1.7', '0.4', 'setosa'),
       ('4.6', '3.4', '1.4', '0.3', 'setosa'),
       ('5', '3.4', '1.5', '0.2', 'setosa'),
       ('4.4', '2.9', '1.4', '0.2', 'setosa'),
       ('4.9', '3.1', '1.5', '0.1', 'setosa'),
       ('5.4', '3.7', '1.5', '0.2', 'setosa'),
       ('4.8', '3.4', '1.6', '0.2', 'setosa'),
       ('4.8', '3', '1.4', '0.1', 'setosa'),
       ('4.3', '3', '1.1', '0.1', 'setosa'),
       ('5.8', '4', '1.2', '0.2', 'setosa'),
       ('5.7', '4.4', '1.5', '0.4', 'setosa'),
       ('5.4', '3.9', '1.3', '0.4', 'setosa'),
       ('5.1', '3.5', '1.4', '0.3', 'setosa'),
       ('5.7', '3.8', '1.7', '0.3', 'setosa'),
       ('5.1', '3.8', '1.5', '0.3', 'setosa'),
       ('5.4', '3.4', '1.7', '0.2', 'setosa'),
       ('5.1', '3.7', '1.5', '0.4', 'setosa'),
       ('4.6', '3.6', '1', '0.2', 'setosa'),
       ('5.1', '3.3', '1.7', '0.5', 'setosa'),
       ('4.8', '3.4', '1.9', '0.2', 'setosa'),
       ('5', '3', '1.6', '0.2', 'setosa'),
       ('5', '3.4', '1.6', '0.4', 'setosa'),
       ('5.2', '3.5', '1.5', '0.2', 'setosa'),
       ('5.2', '3.4', '1.4', '0.2', 'setosa'),
       ('4.7', '3.2', '1.6', '0.2', 'setosa'),
       ('4.8', '3.1', '1.6', '0.2', 'setosa'),
       ('5.4', '3.4', '1.5', '0.4', 'setosa'),
       ('5.2', '4.1', '1.5', '0.1', 'setosa'),
       ('5.5', '4.2', '1.4', '0.2', 'setosa'),
       ('4.9', '3.1', '1.5', '0.2', 'setosa'),
       ('5', '3.2', '1.2', '0.2', 'setosa'),
       ('5.5', '3.5', '1.3', '0.2', 'setosa'),
       ('4.9', '3.6', '1.4', '0.1', 'setosa'),
       ('4.4', '3', '1.3', '0.2', 'setosa'),
       ('5.1', '3.4', '1.5', '0.2', 'setosa'),
       ('5', '3.5', '1.3', '0.3', 'setosa'),
       ('4.5', '2.3', '1.3', '0.3', 'setosa'),
       ('4.4', '3.2', '1.3', '0.2', 'setosa'),
       ('5', '3.5', '1.6', '0.6', 'setosa'),
       ('5.1', '3.8', '1.9', '0.4', 'setosa'),
       ('4.8', '3', '1.4', '0.3', 'setosa'),
       ('5.1', '3.8', '1.6', '0.2', 'setosa'),
       ('4.6', '3.2', '1.4', '0.2', 'setosa'),
       ('5.3', '3.7', '1.5', '0.2', 'setosa'),
       ('5', '3.3', '1.4', '0.2', 'setosa'),
       ('7', '3.2', '4.7', '1.4', 'versicolor'),
       ('6.4', '3.2', '4.5', '1.5', 'versicolor'),
       ('6.9', '3.1', '4.9', '1.5', 'versicolor'),
       ('5.5', '2.3', '4', '1.3', 'versicolor'),
       ('6.5', '2.8', '4.6', '1.5', 'versicolor'),
       ('5.7', '2.8', '4.5', '1.3', 'versicolor'),
       ('6.3', '3.3', '4.7', '1.6', 'versicolor'),
       ('4.9', '2.4', '3.3', '1', 'versicolor'),
       ('6.6', '2.9', '4.6', '1.3', 'versicolor'),
       ('5.2', '2.7', '3.9', '1.4', 'versicolor'),
       ('5', '2', '3.5', '1', 'versicolor'),
       ('5.9', '3', '4.2', '1.5', 'versicolor'),
       ('6', '2.2', '4', '1', 'versicolor'),
       ('6.1', '2.9', '4.7', '1.4', 'versicolor'),
       ('5.6', '2.9', '3.6', '1.3', 'versicolor'),
       ('6.7', '3.1', '4.4', '1.4', 'versicolor'),
       ('5.6', '3', '4.5', '1.5', 'versicolor'),
       ('5.8', '2.7', '4.1', '1', 'versicolor'),
       ('6.2', '2.2', '4.5', '1.5', 'versicolor'),
       ('5.6', '2.5', '3.9', '1.1', 'versicolor'),
       ('5.9', '3.2', '4.8', '1.8', 'versicolor'),
       ('6.1', '2.8', '4', '1.3', 'versicolor'),
       ('6.3', '2.5', '4.9', '1.5', 'versicolor'),
       ('6.1', '2.8', '4.7', '1.2', 'versicolor'),
       ('6.4', '2.9', '4.3', '1.3', 'versicolor'),
       ('6.6', '3', '4.4', '1.4', 'versicolor'),
       ('6.8', '2.8', '4.8', '1.4', 'versicolor'),
       ('6.7', '3', '5', '1.7', 'versicolor'),
       ('6', '2.9', '4.5', '1.5', 'versicolor'),
       ('5.7', '2.6', '3.5', '1', 'versicolor'),
       ('5.5', '2.4', '3.8', '1.1', 'versicolor'),
       ('5.5', '2.4', '3.7', '1', 'versicolor'),
       ('5.8', '2.7', '3.9', '1.2', 'versicolor'),
       ('6', '2.7', '5.1', '1.6', 'versicolor'),
       ('5.4', '3', '4.5', '1.5', 'versicolor'),
       ('6', '3.4', '4.5', '1.6', 'versicolor'),
       ('6.7', '3.1', '4.7', '1.5', 'versicolor'),
       ('6.3', '2.3', '4.4', '1.3', 'versicolor'),
       ('5.6', '3', '4.1', '1.3', 'versicolor'),
       ('5.5', '2.5', '4', '1.3', 'versicolor'),
       ('5.5', '2.6', '4.4', '1.2', 'versicolor'),
       ('6.1', '3', '4.6', '1.4', 'versicolor'),
       ('5.8', '2.6', '4', '1.2', 'versicolor'),
       ('5', '2.3', '3.3', '1', 'versicolor'),
       ('5.6', '2.7', '4.2', '1.3', 'versicolor'),
       ('5.7', '3', '4.2', '1.2', 'versicolor'),
       ('5.7', '2.9', '4.2', '1.3', 'versicolor'),
       ('6.2', '2.9', '4.3', '1.3', 'versicolor'),
       ('5.1', '2.5', '3', '1.1', 'versicolor'),
       ('5.7', '2.8', '4.1', '1.3', 'versicolor'),
       ('6.3', '3.3', '6', '2.5', 'virginica'),
       ('5.8', '2.7', '5.1', '1.9', 'virginica'),
       ('7.1', '3', '5.9', '2.1', 'virginica'),
       ('6.3', '2.9', '5.6', '1.8', 'virginica'),
       ('6.5', '3', '5.8', '2.2', 'virginica'),
       ('7.6', '3', '6.6', '2.1', 'virginica'),
       ('4.9', '2.5', '4.5', '1.7', 'virginica'),
       ('7.3', '2.9', '6.3', '1.8', 'virginica'),
       ('6.7', '2.5', '5.8', '1.8', 'virginica'),
       ('7.2', '3.6', '6.1', '2.5', 'virginica'),
       ('6.5', '3.2', '5.1', '2', 'virginica'),
       ('6.4', '2.7', '5.3', '1.9', 'virginica'),
       ('6.8', '3', '5.5', '2.1', 'virginica'),
       ('5.7', '2.5', '5', '2', 'virginica'),
       ('5.8', '2.8', '5.1', '2.4', 'virginica'),
       ('6.4', '3.2', '5.3', '2.3', 'virginica'),
       ('6.5', '3', '5.5', '1.8', 'virginica'),
       ('7.7', '3.8', '6.7', '2.2', 'virginica'),
       ('7.7', '2.6', '6.9', '2.3', 'virginica'),
       ('6', '2.2', '5', '1.5', 'virginica'),
       ('6.9', '3.2', '5.7', '2.3', 'virginica'),
       ('5.6', '2.8', '4.9', '2', 'virginica'),
       ('7.7', '2.8', '6.7', '2', 'virginica'),
       ('6.3', '2.7', '4.9', '1.8', 'virginica'),
       ('6.7', '3.3', '5.7', '2.1', 'virginica'),
       ('7.2', '3.2', '6', '1.8', 'virginica'),
       ('6.2', '2.8', '4.8', '1.8', 'virginica'),
       ('6.1', '3', '4.9', '1.8', 'virginica'),
       ('6.4', '2.8', '5.6', '2.1', 'virginica'),
       ('7.2', '3', '5.8', '1.6', 'virginica'),
       ('7.4', '2.8', '6.1', '1.9', 'virginica'),
       ('7.9', '3.8', '6.4', '2', 'virginica'),
       ('6.4', '2.8', '5.6', '2.2', 'virginica'),
       ('6.3', '2.8', '5.1', '1.5', 'virginica'),
       ('6.1', '2.6', '5.6', '1.4', 'virginica'),
       ('7.7', '3', '6.1', '2.3', 'virginica'),
       ('6.3', '3.4', '5.6', '2.4', 'virginica'),
       ('6.4', '3.1', '5.5', '1.8', 'virginica'),
       ('6', '3', '4.8', '1.8', 'virginica'),
       ('6.9', '3.1', '5.4', '2.1', 'virginica'),
       ('6.7', '3.1', '5.6', '2.4', 'virginica'),
       ('6.9', '3.1', '5.1', '2.3', 'virginica'),
       ('5.8', '2.7', '5.1', '1.9', 'virginica'),
       ('6.8', '3.2', '5.9', '2.3', 'virginica'),
       ('6.7', '3.3', '5.7', '2.5', 'virginica'),
       ('6.7', '3', '5.2', '2.3', 'virginica'),
       ('6.3', '2.5', '5', '1.9', 'virginica'),
       ('6.5', '3', '5.2', '2', 'virginica'),
       ('6.2', '3.4', '5.4', '2.3', 'virginica'),
       ('5.9', '3', '5.1', '1.8', 'virginica')],
      dtype=[('Sepal.Length', '<U40'), ('Sepal.Width', '<U40'), ('Petal.Length', '<U40'), ('Petal.Width', '<U40'), ('Species', '<U40')])

(3)将待处理数据待类型转化为float类型

PetalLength = iris_data["Petal.Length"].astype(float)
PetalLength
array([1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4,
       1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1. , 1.7, 1.9, 1.6,
       1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3,
       1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5,
       4.9, 4. , 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4. , 4.7, 3.6,
       4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4. , 4.9, 4.7, 4.3, 4.4, 4.8, 5. ,
       4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4. , 4.4,
       4.6, 4. , 3.3, 4.2, 4.2, 4.2, 4.3, 3. , 4.1, 6. , 5.1, 5.9, 5.6,
       5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5. , 5.1, 5.3, 5.5,
       6.7, 6.9, 5. , 5.7, 4.9, 6.7, 4.9, 5.7, 6. , 4.8, 4.9, 5.6, 5.8,
       6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1,
       5.9, 5.7, 5.2, 5. , 5.2, 5.4, 5.1])

(4)数据排序

np.sort(PetalLength)
array([1. , 1.1, 1.2, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4,
       1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.5, 1.5,
       1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.6, 1.6,
       1.6, 1.6, 1.6, 1.6, 1.6, 1.7, 1.7, 1.7, 1.7, 1.9, 1.9, 3. , 3.3,
       3.3, 3.5, 3.5, 3.6, 3.7, 3.8, 3.9, 3.9, 3.9, 4. , 4. , 4. , 4. ,
       4. , 4.1, 4.1, 4.1, 4.2, 4.2, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.4,
       4.4, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.6, 4.6, 4.6, 4.7,
       4.7, 4.7, 4.7, 4.7, 4.8, 4.8, 4.8, 4.8, 4.9, 4.9, 4.9, 4.9, 4.9,
       5. , 5. , 5. , 5. , 5.1, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1, 5.2,
       5.2, 5.3, 5.3, 5.4, 5.4, 5.5, 5.5, 5.5, 5.6, 5.6, 5.6, 5.6, 5.6,
       5.6, 5.7, 5.7, 5.7, 5.8, 5.8, 5.8, 5.9, 5.9, 6. , 6. , 6.1, 6.1,
       6.1, 6.3, 6.4, 6.6, 6.7, 6.7, 6.9])

(5)数据去重

np.unique(PetalLength)
array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, 3. , 3.3, 3.5, 3.6,
       3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
       5. , 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.3,
       6.4, 6.6, 6.7, 6.9])

sum: 计算数组的和

mean 计算数组均值

std 计算数组标准差

var 计算数组方差

min 计算数组最小值

max 计算数组最大值

argmin 返回数组最小元素的索引

argmax 返回数组最小元素的索引

cumsum 计算所有元素的累计和

cumprod 计算所有元素的累计积

对指定列求和、均值、标准差、方差、最小值、最大值

np.sum(PetalLength)
563.7
np.mean(PetalLength)
3.7580000000000005
np.std(PetalLength)
1.759404065775303
np.var(PetalLength)
3.0955026666666665
np.min(PetalLength)
1.0
np.max(PetalLength)
6.9

加油!

感谢!

努力!

以上是关于Python数据分析与可视化NumPy数值计算(实训一)的主要内容,如果未能解决你的问题,请参考以下文章

Python数据分析与可视化期末复习笔记整理(不挂科)

python与数据分析Numpy数值计算基础——补充

科学计算和可视化

科学计算和可视化

Python三剑客阅读顺序

python中都有哪些包