Barrett And Montgomery of Polynomials

Posted 山登绝顶我为峰 3(^v^)3

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Barrett And Montgomery of Polynomials相关的知识,希望对你有一定的参考价值。

Barrett reduction of polynomials

对于 f , g ∈ Z p [ x ] f,g \\in Z_p[x] f,gZp[x],其中 p p p是素数。那么:
f m o d    g = f − ⌊ f g ⌋ g f \\mod g = f - \\lfloor \\fracfg \\rfloor g fmodg=fgfg
其中的分式属于分式域: 1 / g ∈ f g ∣ f , g ∈ Z p [ x ] 1/g \\in \\ \\dfracfg | f,g \\in Z_p[x] \\ 1/ggff,gZp[x]

我们寻找一个 m ∈ Z p [ x ] m \\in Z_p[x] mZp[x],使得:
1 g = m R \\frac1g = \\fracmR g1=Rm
其中, R = x k ∈ Z p [ x ] R=x^k \\in Z_p[x] R=xkZp[x] k k k是某个正整数

那么选取:
m = ⌊ R g ⌋ ∈ Z p [ x ] m = \\lfloor \\fracRg \\rfloor \\in Z_p[x] m=gRZp[x]
误差大小为:
e = 1 g − ⌊ R g ⌋ R e = \\frac1g - \\dfrac\\lfloor \\fracRg \\rfloorR e=g1RgR
于是,
f m o d    g ≈ f − ⌊ f ⋅ m R ⌋ g f \\mod g \\approx f - \\lfloor \\fracf \\cdot mR \\rfloor g fmodgfRfmg
选取足够大的 k k k,使得 f ⋅ e f \\cdot e fe的系数足够小,那么:
f m o d    g = f − ( ( f ⋅ m ) ≫ k ) g ∈ Z p [ x ] f \\mod g = f - ((f \\cdot m) \\gg k) g \\in Z_p[x] fmodg=f((fm)k)gZp[x]
这里的 ≫ \\gg 运算定义为 ( ∑ i = 0 n − 1 a i x i ≫ k ) : = ∑ i = k n − 1 a i x i − k (\\sum_i=0^n-1a_i x^i \\gg k) := \\sum_i=k^n-1a_i x^i-k (i=0n1aixik):=i=kn1aixik

Montgomery multiplication of polynomials

对于 f , g , h ∈ Z p [ x ] f,g,h \\in Z_p[x] f,g,hZp[x],其中 p p p是素数。计算: f ⋅ g m o d    h f \\cdot g \\mod h fgmodh

首先,寻找 R = x k ∈ Z p [ x ] R=x^k \\in Z_p[x] R=xkZp[x],其中 k k k是某个正整数,使得 g c d ( R , h ) = 1 gcd(R,h)=1 gcd(R,h)=1

计算:
h − 1 ⋅ h ≡ 1 m o d    R R − 1 ⋅ R ≡ 1 m o d    h h^-1 \\cdot h \\equiv 1 \\mod R\\\\ R^-1 \\cdot R \\equiv 1 \\mod h\\\\ h1h1modRR1R1modh
做可逆映射:
f ‾ = f R m o d    h g ‾ = g R m o d    h \\overlinef = f R \\mod h\\\\ \\overlineg = g R \\mod h\\\\ f=fRmodhg=gRmodh
那么
f g ‾ = f g R = f ‾ ⋅ g ‾ ⋅ R − 1 m o d    h \\overlinef g = f g R = \\overlinef \\cdot \\overlineg \\cdot R^-1 \\mod h fg=fgR=fgR1modh
简记 T = f ‾ ⋅ g ‾ T = \\overlinef \\cdot \\overlineg T=fg,则 f g ‾ = T R − 1 \\overlinef g = TR^-1 Barrett约减

Barrett 食管是啥意思?

LeetcodeBitwise AND of Numbers Range

difference of top and left between Javascript and Jquery

Distributed Representations of Words and Phrases and their Compositionality

[GeeksForGeeks] Check sum of covered and uncovered nodes of binary tree