实验八 项目案例-电商数据分析
Posted 36.6°
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实验八 项目案例-电商数据分析相关的知识,希望对你有一定的参考价值。
电商大数据离线计算
第1关:统计用户流失情况
任务描述
本关任务:根据用户行为数据,编写 MapReduce 程序来统计出用户流失情况。
相关知识
本实训为中级难度的 MapReduce 程序设计练习,模拟真实场景中电商数据的统计分析,因此假设你已经掌握了 MapReduce 的基本使用。
如果你对 MapReduce 还不了解,可先进行本平台的MapReduce基础实战实训,之后再继续本实训。
数据文件格式说明
这是编程中用到的电商数据数据,为 CSV 格式,文件名user_behavior.csv,大小9948行,前几行示例如下:
1002309,1008608,手机,pv
1002573,1009007,耳机,pv
1001541,1008614,手机,pv
1001192,1008612,手机,pv
1001016,1008909,平板电脑,buy
1001210,1008605,手机,pv
1001826,1008704,笔记本,pv
1002208,1008906,平板电脑,pv
1002308,1008702,笔记本,pv
1002080,1008702,笔记本,cart
1001525,1008702,笔记本,cart
1002749,1008702,笔记本,pv
1002134,1008704,笔记本,cart
1002497,1008608,手机,pv
···
---总共 9948行---
- 每一行数据(4列)分别表示: 用户id, 商品id, 商品类别, 用户行为;
- 商品类别有 手机、平板电脑、笔记本、智能手表、耳机,总共5大类别;
- 用户行为中pv代表点击浏览,cart代表加入购物车,fav代表添加到喜欢,buy代表购买。
用户流失情况
就是统计出用户4种不同用户行为的数量,即点击浏览(pv)的数量,购买(buy)的数量等。
编程要求
根据提示,在右侧编辑器补充代码,计算得出商品点击量排行。
- main 方法已给出,其中 Job 和输入输出路径已配置完成,无需更改;
- map 和 reduce 的输入输出 key、value 已给出;
- 编程中直接写 map 与 reduce 过程的主要内容即可。
预期输出格式:
buy,总数
cart,总数
fav,总数
pv,总数
测试说明
平台会对你编写的代码进行测试,如果编写的 MapReduce 输出与预期一致,则通过。
注:出于显示原因,网页端的 mapreduce 的输出结果中制表符统一用逗号代替显示,但在实际 reduce 结果中 key\\value 仍是原样制表符分割,这只是显示上的变化,不影响编程与评测结果。
开始你的任务吧,祝你成功!
代码实现
package educoder;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* UserLoseDriver
*/
public class UserLoseDriver
public static class ThisMap extends Mapper<Object, Text, Text, IntWritable>
//私有变量1,可重复使用
private static IntWritable one = new IntWritable(1);
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException
/*** 在这编写map内容 ****/
/********** Begin **********/
//分割每行数据
String[] atts = value.toString().split(",");
//得到行为属性
String behavior = atts[3];
//行为属性作key,1作value的map输出
context.write(new Text(behavior), one);
/********** End **********/
public static class ThisReduce extends Reducer<Text, IntWritable, Text, IntWritable>
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException
/*** 在这编写reduce内容 ****/
/********** Begin **********/
//统计同key的values总数
int sum = 0;
for(IntWritable one : values)
sum += one.get();
//写入到reduce输出
context.write(key, new IntWritable(sum));
/********** End **********/
public static void main(String[] args) throws Exception
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "用户流失情况查询");
job.setJarByClass(UserLoseDriver.class);
job.setMapperClass(ThisMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(ThisReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第2关:统计所有商品点击量排行
任务描述
本关任务:根据用户行为数据,编写 MapReduce 程序来统计出商品点击量排行。
相关知识
本实训为中级难度的 MapReduce 程序设计练习,模拟真实场景中电商数据的统计分析,因此假设你已经掌握了 MapReduce 的基本使用。
如果你对 MapReduce 还不了解,可先进行本平台的MapReduce基础实战实训,之后再继续本实训。
数据文件格式说明
这是编程中用到的电商数据数据,为 CSV 格式,文件名user_behavior.csv,大小9948行,前几行示例如下:
1002309,1008608,手机,pv
1002573,1009007,耳机,pv
1001541,1008614,手机,pv
1001192,1008612,手机,pv
1001016,1008909,平板电脑,buy
1001210,1008605,手机,pv
1001826,1008704,笔记本,pv
1002208,1008906,平板电脑,pv
1002308,1008702,笔记本,pv
1002080,1008702,笔记本,cart
1001525,1008702,笔记本,cart
1002749,1008702,笔记本,pv
1002134,1008704,笔记本,cart
1002497,1008608,手机,pv
···
---总共 9948行---
- 每一行数据(4列)分别表示: 用户id, 商品id, 商品类别, 用户行为;
- 商品类别有 手机、平板电脑、笔记本、智能手表、耳机,总共5大类别;
- 用户行为中pv代表点击浏览,cart代表加入购物车,fav代表添加到喜欢,buy代表购买。
商品点击量排行
即统计出每个商品id中用户行为是pv(点击浏览)的数量,reduce的输出最后是按点击量的大小从大到小排序。
cleanup()方法
编程中可能会用到 cleanup() 方法,cleanup 方法是 mapper/reduce 对象执行完所有的 map/reduce 方法之后最后执行的方法,可用于清理资源释放或清理工作;默认继承的父类方法为空,什么也不做。
编程要求
根据提示,在右侧编辑器补充代码,计算得出商品点击量排行。
- main 方法已给出,其中 Job 和输入输出路径已配置完成,无需更改;
- map 和 reduce 的输入输出 key、value 已给出;
- 编程中直接写 map 与 reduce 过程的主要内容即可。
预期输出格式(按点击量从大到小):
商品id,点击量
商品id,点击量
···
···
测试说明
平台会对你编写的代码进行测试,如果编写的 MapReduce 输出与预期一致,则通过。
注:出于显示原因,网页端的 mapreduce 的输出结果中制表符统一用逗号代替显示,但在实际 reduce 结果中 key\\value 仍是原样制表符分割,这只是显示上的变化,不影响编程与评测结果。
开始你的任务吧,祝你成功!
代码实现
package educoder;
import java.io.IOException;
import java.util.LinkedList;
import java.util.List;
import java.util.stream.Collectors;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* UserLoseDriver
*/
public class ItemClickRankDriver
public static class ThisMap extends Mapper<Object, Text, Text, IntWritable>
private static IntWritable one = new IntWritable(1);
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException
/*** 在这编写map内容 ****/
/********** Begin **********/
//1. 分割每行数据
String[] atts = value.toString().split(",");
//2. 得到商品id
String item = atts[1];
//3. 得到行为属性
String behavior = atts[3];
//4. 如果行为属性是 'pv',则写入到map输出
if (behavior.equals("pv"))
context.write(new Text(item), one);
/********** End **********/
public static class ThisReduce extends Reducer<Text, IntWritable, Text, IntWritable>
//对象实例,用来保存reduce方法中处理的数据
List<Object[]> list = new LinkedList<>();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException
/*** 在这编写reduce内容 ****/
/********** Begin **********/
// 统计同key总数, 把key和sum写入到list中
int sum = 0;
for (IntWritable one : values)
sum += one.get();
list.add(new Object[] key.toString(), Integer.valueOf(sum) );
/********** End **********/
//cleanup方法,即reduce对象执行完所有的reduce方法后最后执行的方法
@Override
protected void cleanup(Reducer<Text, IntWritable, Text, IntWritable>.Context context)
throws IOException, InterruptedException
// 按照sum的大小对list进行排序,得到的结果是从小到大
list = list.stream().sorted((o1, o2) -> return ((int)o1[1] - (int)o2[1]);).collect(Collectors.toList());
// 从后向前遍历,即从大到小
for(int i=list.size()-1; i>=0; i--)
Object[] o = list.get(i);
//写入到reduce输出
context.write(new Text((String) o[0]), new IntWritable((int) o[1]));
public static void main(String[] args) throws Exception
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "商品点击量排行");
job.setJarByClass(ItemClickRankDriver.class);
job.setMapperClass(ThisMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(ThisReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第3关:统计各个商品类别中点击量最高的商品
任务描述
本关任务:根据用户行为数据,编写 MapReduce 程序来统计各个商品类别中点击量最高的商品。
相关知识
本实训为中级难度的 MapReduce 程序设计练习,模拟真实场景中电商数据的统计分析,因此假设你已经掌握了 MapReduce 的基本使用。
如果你对 MapReduce 还不了解,可先进行本平台的MapReduce基础实战实训,之后再继续本实训。
数据文件格式说明
这是编程中用到的电商数据数据,为 CSV 格式,文件名user_behavior.csv,大小9948行,前几行示例如下:
1002309,1008608,手机,pv
1002573,1009007,耳机,pv
1001541,1008614,手机,pv
1001192,1008612,手机,pv
1001016,1008909,平板电脑,buy
1001210,1008605,手机,pv
1001826,1008704,笔记本,pv
1002208,1008906,平板电脑,pv
1002308,1008702,笔记本,pv
1002080,1008702,笔记本,cart
1001525,1008702,笔记本,cart
1002749,1008702,笔记本,pv
1002134,1008704,笔记本,cart
1002497,1008608,手机,pv
···
---总共 9948行---
- 每一行数据(4列)分别表示: 用户id, 商品id, 商品类别, 用户行为;
- 商品类别有 手机、平板电脑、笔记本、智能手表、耳机,总共5大类别;
- 用户行为中pv代表点击浏览,cart代表加入购物车,fav代表添加到喜欢,buy代表购买。
编程要求
根据提示,在右侧编辑器补充代码,计算得出各个商品类别中点击量最高的商品。
- main 方法已给出,其中 Job 和输入输出路径已配置完成,无需更改;
- map 和 reduce 的输入输出 key、value 已给出;
- 编程中直接写 map 与 reduce 过程的主要内容即可。
预期输出格式:
商品类型,点击量最高的商品id
商品类型,点击量最高的商品id
···
测试说明
平台会对你编写的代码进行测试,如果编写的 MapReduce 输出与预期一致,则通过。
注:出于显示原因,网页端的 mapreduce 的输出结果中制表符统一用逗号代替显示,但在实际 reduce 结果中 key\\value 仍是原样制表符分割,这只是显示上的变化,不影响编程与评测结果
开始你的任务吧,祝你成功!
代码实现
package educoder;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* UserLoseDriver
*/
public class ItemClickTopOneEachTypeDriver
public static class ThisMap extends Mapper<Object, Text, Text, Text>
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException
/*** 在这编写map内容 ****/
/********** Begin **********/
// 作用跟前几关一样,不再描述
String[] atts = value.toString().split(",");
String item = atts[1];
String type = atts[2];
String behavior = atts[3];
if (behavior.equals("pv"))
context.write(new Text(type), new Text(item));
/********** End **********/
public static class ThisReduce extends Reducer<Text, Text, Text, Text>
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException
/*** 在这编写reduce内容 ****/
/********** Begin **********/
// 提示: 先得出所有商品id的数量,再从这些数量中找出最大值
// 1. 一个map,用来保存各个商品id的数量
Map<String, Integer> map = new HashMap<>();
// 2. 统计values中各个value的数量
for (Text value : values)
String item = value.toString();
Integer count = !map.containsKey(item) ? 1 : map.get(item) + 1;
map.put(item, count);
// 3. 找出map中value最大的键值对
Map.Entry<String, Integer> itemMax = Collections.max(map.entrySet(), (entry1, entry2) ->
return entry1.getValue() - entry2.getValue();
);
// 4. 结果写入reduce输出
context.write(key, new Text(itemMax.getKey()));
/********** End **********/
public static void main(String[] args) throws Exception
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "各个商品类别中点击量最高的商品");
job.setJarByClass(ItemClickTopOneEachTypeDriver.class);
job.setMapperClass(ThisMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setReducerClass(ThisReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第4关:统计五种商品类别占比
任务描述
本关任务:根据用户行为数据,编写 MapReduce 程序来统计出五种商品分类占比数据。
相关知识
本实训为中级难度的 MapReduce 程序设计练习,模拟真实场景中电商数据的统计分析,因此假设你已经掌握了 MapReduce 的基本使用。
如果你对 MapReduce 还不了解,可先进行本平台的MapReduce基础实战实训,之后再继续本实训。
数据文件格式说明
这是编程中用到的电商数据数据,为 CSV 格式,文件名user_behavior.csv,大小9948行,前几行示例如下:
1002309,1008608,手机,pv
1002573,1009007,耳机,pv
1001541,1008614,手机,pv
1001192,1008612,手机,pv
1001016,1008909,平板电脑,buy
1001210,1008605,手机,pv
1001826,1008704,笔记本,pv
1002208,1008906,平板电脑,pv
1002308,1008702,笔记本,pv
1002080,1008702,笔记本,cart
1001525,1008702,笔记本,cart
1002749,1008702,笔记本,pv
1002134,1008704,笔记本,cart
1002497,1008608,手机,pv
···
---总共 9948行---
- 每一行数据(4列)分别表示: 用户id, 商品id, 商品类别, 用户行为;
- 商品类别有 手机、平板电脑、笔记本、智能手表、耳机,总共5大类别;
- 用户行为中pv代表点击浏览,cart代表加入购物车,fav代表添加到喜欢,buy代表购买。
商品类别占比
统计出各个商品类别的数量,在把一个商品类别的数量除以所有商品类别的数量即可得到该商品类别的占比。
cleanup()方法
编程中可能会用到 cleanup() 方法,cleanup 方法是 mapper/reduce 对象执行完所有的 map/reduce 方法之后最后执行的方法,可用于清理资源释放或清理工作;默认继承的父类方法为空,什么也不做。
编程要求
根据提示,在右侧编辑器补充代码,计算得出五种商品分类占比数据。
- main 方法已给出,其中 Job 和输入输出路径已配置完成,无需更改;
- map 和 reduce 的输入输出 key、value 已给出;
- 编程中直接写 map 与 reduce 过程的主要内容即可。
预期输出格式:
商品类别,占总数比例
商品类别,占总数比例
···
测试说明
平台会对你编写的代码进行测试,如果编写的 MapReduce 输出与预期一致,则通过。
注:出于显示原因,网页端的 mapreduce 的输出结果中制表符统一用逗号代替显示,但在实际 reduce 结果中 key\\value 仍是原样制表符分割,这只是显示上的变化,不影响编程与评测结果。
开始你的任务吧,祝你成功!
代码实现
package educoder;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* UserLoseDriver
*/
public class ItemTypeRatioDriver
public static class ThisMap extends Mapper<Object, Text, Text, IntWritable>
private static IntWritable one = new IntWritable(1);
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException
/*** 在这编写map内容 ****/
/********** Begin **********/
String[] atts = value.toString().split(",");
String type = atts[2];
context.write(new Text(type), one);
/********** End **********/
public static class ThisReduce extends Reducer<Text, IntWritable, Text, DoubleWritable>
// 保存reduce方法的处理结果
Map<String,Integer> map = new HashMap<>();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException
/*** 在这编写reduce内容 ****/
/********** Begin **********/
int count = 0;
for (IntWritable one : values)
count += one.get();
map.put(key.toString(), count);
/********** End **********/
// 需要重写 cleanup方法
@Override
protected void cleanup(Reducer<Text, IntWritable, Text, DoubleWritable>.Context context)
throws IOException, InterruptedException
// 得到所有商品类别数量的总和
int sum = 0;
for (int v : map.values())
sum += v;
// 得出每个商品类别的占比
for (String key : map.keySet())
int value = map.get(key);
double ratio = ((double) value) / sum;
context.write(new Text(key), new DoubleWritable(ratio));
public static void main(String[] args) throws Exception
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "五种商品分类占比");
job.setJarByClass(ItemTypeRatioDriver.class);
job.setMapperClass(ThisMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(ThisReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
第5关:统计各类商品种类的购买次数
任务描述
本关任务:根据用户行为数据,编写 MapReduce 程序来统计出各类商品种类的购买次数。
相关知识
本实训为中级难度的 MapReduce 程序设计练习,模拟真实场景中电商数据的统计分析,因此假设你已经掌握了 MapReduce 的基本使用。
如果你对 MapReduce 还不了解,可先进行本平台的MapReduce基础实战实训,之后再继续本实训。
数据文件格式说明
这是编程中用到的电商数据数据,为 CSV 格式,文件名user_behavior.csv,大小9948行,前几行示例如下:
1002309,1008608,手机,pv
1002573,1009007,耳机,pv
1001541,1008614,手机,pv
1001192,1008612,手机,pv
1001016,1008909,平板电脑,buy
1001210,1008605,手机,pv
1001826,1008704,笔记本,pv
1002208,1008906,平板电脑,pv
1002308,1008702,笔记本,pv
1002080,1008702,笔记本,cart
1001525,1008702,笔记本,cart
1002749,1008702,笔记本,pv
1002134,1008704,笔记本,cart
1002497,1008608,手机,pv
···
---总共 9948行---
- 每一行数据(4列)分别表示: 用户id, 商品id, 商品类别, 用户行为;
- 商品类别有 手机、平板电脑、笔记本、智能手表、耳机,总共5大类别;
- 用户行为中pv代表点击浏览,cart代表加入购物车,fav代表添加到喜欢,buy代表购买。
编程要求
根据提示,在右侧编辑器补充代码,计算得出各类商品种类的购买次数。
- main 方法已给出,其中 Job 和输入输出路径已配置完成,无需更改;
- map 和 reduce 的输入输出 key、value 已给出;
- 编程中直接写 map 与 reduce 过程的主要内容即可。
预期输出格式:
商品类型,购买次数
商品类型,购买次数
···
测试说明
平台会对你编写的代码进行测试,如果编写的 MapReduce 输出与预期一致,则通过。
注:出于显示原因,网页端的 mapreduce 的输出结果中制表符统一用逗号代替显示,但在实际 reduce 结果中 key\\value 仍是原样制表符分割,这只是显示上的变化,不影响编程与评测结果。
开始你的任务吧,祝你成功!
代码实现
package educoder;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;以上是关于实验八 项目案例-电商数据分析的主要内容,如果未能解决你的问题,请参考以下文章