Linux编程之PING的实现
Posted 谢玉林
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux编程之PING的实现相关的知识,希望对你有一定的参考价值。
void icmp_pack(struct icmp* icmphdr, int seq, int length) { int i = 0; icmphdr->icmp_type = ICMP_ECHO; //类型填回送请求 icmphdr->icmp_code = 0; icmphdr->icmp_cksum = 0; //注意,这里先填写0,很重要! icmphdr->icmp_seq = seq; //这里的序列号我们填1,2,3,4.... icmphdr->icmp_id = pid & 0xffff; //我们使用pid作为icmp_id,icmp_id只是2字节,而pid有4字节 for(i=0;i<length;i++) { icmphdr->icmp_data[i] = i; //填充数据段,使ICMP报文大于64B } icmphdr->icmp_cksum = cal_chksum((unsigned short*)icmphdr, length); //校验和计算 }
这里再三提醒一下,icmp_cksum 必须先填写为0再执行校验和算法计算,否则ping时对方主机会因为校验和计算错误而丢弃请求包,导致ping的失败。我一个同事曾经就因为这么一个错误而排查许久,血的教训请铭记。
这里简单介绍一下checksum(校验和)。
这里简单介绍一下checksum(校验和)。
计算机网络通信时,为了检验在数据传输过程中数据是否发生了错误,通常在传输数据的时候连同校验和一块传输,当接收端接受数据时候会从新计算校验和,如果与原校验和不同就视为出错,丢弃该数据包,并返回icmp报文。
算法基本思路:
IP/ICMP/IGMP/TCP/UDP等协议的校验和算法都是相同的,采用的都是将数据流视为16位整数流进行重复叠加计算。为了计算检验和,首先把检验和字段置为0。然后,对有效数据范围内中每个16位进行二进制反码求和,结果存在检验和字段中,如果数据长度为奇数则补一字节0。当收到数据后,同样对有效数据范围中每个16位数进行二进制反码的求和。由于接收方在计算过程中包含了发送方存在首部中的检验和,因此,如果首部在传输过程中没有发生任何差错,那么接收方计算的结果应该为全0或全1(具体看实现了,本质一样) 。如果结果不是全0或全1,那么表示数据错误。
/*校验和算法*/ unsigned short cal_chksum(unsigned short *addr,int len) { int nleft=len; int sum=0; unsigned short *w=addr; unsigned short answer=0; /*把ICMP报头二进制数据以2字节为单位累加起来*/ while(nleft>1) { sum+=*w++; nleft-=2; } /*若ICMP报头为奇数个字节,会剩下最后一字节。把最后一个字节视为一个2字节数据的高字节,这个2字节数据的低字节为0,继续累加*/ if( nleft==1) { *(unsigned char *)(&answer)=*(unsigned char *)w; sum+=answer; } sum=(sum>>16)+(sum&0xffff); sum+=(sum>>16); answer=~sum; return answer; }
(3) ICMP包的解包
知道怎么封装包,那解包就也不难了,注意的是,收到一个ICMP包,我们不要就认为这个包就是我们发出去的ICMP回送回答包,我们需要加一层代码来判断该ICMP报文的id和seq字段是否符合我们发送的ICMP报文的设置,来验证ICMP回复包的正确性。
int icmp_unpack(char* buf, int len) { int iphdr_len; struct timeval begin_time, recv_time, offset_time; int rtt; //round trip time struct ip* ip_hdr = (struct ip *)buf; iphdr_len = ip_hdr->ip_hl*4; struct icmp* icmp = (struct icmp*)(buf+iphdr_len); //使指针跳过IP头指向ICMP头 len-=iphdr_len; //icmp包长度 if(len < 8) //判断长度是否为ICMP包长度 { fprintf(stderr, "Invalid icmp packet.Its length is less than 8\\n"); return -1; } //判断该包是ICMP回送回答包且该包是我们发出去的 if((icmp->icmp_type == ICMP_ECHOREPLY) && (icmp->icmp_id == (pid & 0xffff))) { if((icmp->icmp_seq < 0) || (icmp->icmp_seq > PACKET_SEND_MAX_NUM)) { fprintf(stderr, "icmp packet seq is out of range!\\n"); return -1; } ping_packet[icmp->icmp_seq].flag = 0; begin_time = ping_packet[icmp->icmp_seq].begin_time; //去除该包的发出时间 gettimeofday(&recv_time, NULL); offset_time = cal_time_offset(begin_time, recv_time); rtt = offset_time.tv_sec*1000 + offset_time.tv_usec/1000; //毫秒为单位 printf("%d byte from %s: icmp_seq=%u ttl=%d rtt=%d ms\\n", len, inet_ntoa(ip_hdr->ip_src), icmp->icmp_seq, ip_hdr->ip_ttl, rtt); } else { fprintf(stderr, "Invalid ICMP packet! Its id is not matched!\\n"); return -1; } return 0; }
二、发包线程的搭建
根据PING程序的框架,我们需要建立一个线程用于ping包的发送,我的想法是这样的:使用sendto进行发包,发包速率我们维持在1秒1发,我们需要用一个全局变量记录第一个ping包发出的时间,除此之外,我们还需要一个全局变量来记录我们发出的ping包到底有几个,这两个变量用于后来收到ping包回复后的数据计算。
void ping_send() { char send_buf[128]; memset(send_buf, 0, sizeof(send_buf)); gettimeofday(&start_time, NULL); //记录第一个ping包发出的时间 while(alive) { int size = 0; gettimeofday(&(ping_packet[send_count].begin_time), NULL); ping_packet[send_count].flag = 1; //将该标记为设置为该包已发送 icmp_pack((struct icmp*)send_buf, send_count, 64); //封装icmp包 size = sendto(rawsock, send_buf, 64, 0, (struct sockaddr*)&dest, sizeof(dest)); send_count++; //记录发出ping包的数量 if(size < 0) { fprintf(stderr, "send icmp packet fail!\\n"); continue; } sleep(1); } }
三、收包线程的搭建
我们同样建立一个接收包的线程,这里我们采用select函数进行收包,并为select函数设置超时时间为200us,若发生超时,则进行下一个循环。同样地,我们也需要一个全局变量来记录成功接收到的ping回复包的数量。
void ping_recv() { struct timeval tv; tv.tv_usec = 200; //设置select函数的超时时间为200us tv.tv_sec = 0; fd_set read_fd; char recv_buf[512]; memset(recv_buf, 0 ,sizeof(recv_buf)); while(alive) { int ret = 0; FD_ZERO(&read_fd); FD_SET(rawsock, &read_fd); ret = select(rawsock+1, &read_fd, NULL, NULL, &tv); switch(ret) { case -1: fprintf(stderr,"fail to select!\\n"); break; case 0: break; default: { int size = recv(rawsock, recv_buf, sizeof(recv_buf), 0); if(size < 0) { fprintf(stderr,"recv data fail!\\n"); continue; } ret = icmp_unpack(recv_buf, size); //对接收的包进行解封 if(ret == -1) //不是属于自己的icmp包,丢弃不处理 { continue; } recv_count++; //接收包计数 } break; } } }
四、中断处理
我们规定了一次ping发送的包的最大值为64个,若超出该数值就停止发送。作为PING的使用者,我们一般只会发送若干个包,若有这几个包顺利返回,我们就crtl+c中断ping。这里的代码主要是为中断信号写一个中断处理函数,将alive这个全局变量设置为0,进而使发送ping包的循环停止而结束程序。
void icmp_sigint(int signo) { alive = 0; gettimeofday(&end_time, NULL); time_interval = cal_time_offset(start_time, end_time); } signal(SIGINT, icmp_sigint);
五、总体实现
各模块介绍完了,现在贴出完整代码。
1 #include <stdio.h> 2 #include <netinet/in.h> 3 #include <netinet/ip.h> 4 #include <netinet/ip_icmp.h> 5 #include <unistd.h> 6 #include <signal.h> 7 #include <arpa/inet.h> 8 #include <errno.h> 9 #include <sys/time.h> 10 #include <string.h> 11 #include <netdb.h> 12 #include <pthread.h> 13 14 15 #define PACKET_SEND_MAX_NUM 64 16 17 typedef struct ping_packet_status 18 { 19 struct timeval begin_time; 20 struct timeval end_time; 21 int flag; //发送标志,1为已发送 22 int seq; //包的序列号 23 }ping_packet_status; 24 25 26 27 ping_packet_status ping_packet[PACKET_SEND_MAX_NUM]; 28 29 int alive; 30 int rawsock; 31 int send_count; 32 int recv_count; 33 pid_t pid; 34 struct sockaddr_in dest; 35 struct timeval start_time; 36 struct timeval end_time; 37 struct timeval time_interval; 38 39 /*校验和算法*/ 40 unsigned short cal_chksum(unsigned short *addr,int len) 41 { int nleft=len; 42 int sum=0; 43 unsigned short *w=addr; 44 unsigned short answer=0; 45 46 /*把ICMP报头二进制数据以2字节为单位累加起来*/ 47 while(nleft>1) 48 { 49 sum+=*w++; 50 nleft-=2; 51 } 52 /*若ICMP报头为奇数个字节,会剩下最后一字节。把最后一个字节视为一个2字节数据的高字节,这个2字节数据的低字节为0,继续累加*/ 53 if( nleft==1) 54 { 55 *(unsigned char *)(&answer)=*(unsigned char *)w; 56 sum+=answer; 57 } 58 sum=(sum>>16)+(sum&0xffff); 59 sum+=(sum>>16); 60 answer=~sum; 61 return answer; 62 } 63 64 struct timeval cal_time_offset(struct timeval begin, struct timeval end) 65 { 66 struct timeval ans; 67 ans.tv_sec = end.tv_sec - begin.tv_sec; 68 ans.tv_usec = end.tv_usec - begin.tv_usec; 69 if(ans.tv_usec < 0) //如果接收时间的usec小于发送时间的usec,则向sec域借位 70 { 71 ans.tv_sec--; 72 ans.tv_usec+=1000000; 73 } 74 return ans; 75 } 76 77 void icmp_pack(struct icmp* icmphdr, int seq, int length) 78 { 79 int i = 0; 80 81 icmphdr->icmp_type = ICMP_ECHO; 82 icmphdr->icmp_code = 0; 83 icmphdr->icmp_cksum = 0; 84 icmphdr->icmp_seq = seq; 85 icmphdr->icmp_id = pid & 0xffff; 86 for(i=0;i<length;i++) 87 { 88 icmphdr->icmp_data[i] = i; 89 } 90 91 icmphdr->icmp_cksum = cal_chksum((unsigned short*)icmphdr, length); 92 } 93 94 int icmp_unpack(char* buf, int len) 95 { 96 int iphdr_len; 97 struct timeval begin_time, recv_time, offset_time; 98 int rtt; //round trip time 99 100 struct ip* ip_hdr = (struct ip *)buf; 101 iphdr_len = ip_hdr->ip_hl*4; 102 struct icmp* icmp = (struct icmp*)(buf+iphdr_len); 103 len-=iphdr_len; //icmp包长度 104 if(len < 8) //判断长度是否为ICMP包长度 105 { 106 fprintf(stderr, "Invalid icmp packet.Its length is less than 8\\n"); 107 return -1; 108 } 109 110 //判断该包是ICMP回送回答包且该包是我们发出去的 111 if((icmp->icmp_type == ICMP_ECHOREPLY) && (icmp->icmp_id == (pid & 0xffff))) 112 { 113 if((icmp->icmp_seq < 0) || (icmp->icmp_seq > PACKET_SEND_MAX_NUM)) 114 { 115 fprintf(stderr, "icmp packet seq is out of range!\\n"); 116 return -1; 117 } 118 119 ping_packet[icmp->icmp_seq].flag = 0; 120 begin_time = ping_packet[icmp->icmp_seq].begin_time; 121 gettimeofday(&recv_time, NULL); 122 123 offset_time = cal_time_offset(begin_time, recv_time); 124 rtt = offset_time.tv_sec*1000 + offset_time.tv_usec/1000; //毫秒为单位 125 126 printf("%d byte from %s: icmp_seq=%u ttl=%d rtt=%d ms\\n", 127 len, inet_ntoa(ip_hdr->ip_src), icmp->icmp_seq, ip_hdr->ip_ttl, rtt); 128 129 } 130 else 131 { 132 fprintf(stderr, "Invalid ICMP packet! Its id is not matched!\\n"); 133 return -1; 134 } 135 return 0; 136 } 137 138 void ping_send() 139 { 140 char send_buf[128]; 141 memset(send_buf, 0, sizeof(send_buf)); 142 gettimeofday(&start_time, NULL); //记录第一个ping包发出的时间 143 while(alive) 144 { 145 int size = 0; 146 gettimeofday(&(ping_packet[send_count].begin_time), NULL); 147 ping_packet[send_count].flag = 1; //将该标记为设置为该包已发送 148 149 icmp_pack((struct icmp*)send_buf, send_count, 64); //封装icmp包 150 size = sendto(rawsock, send_buf, 64, 0, (struct sockaddr*)&dest, sizeof(dest)); 151 send_count++; //记录发出ping包的数量 152 if(size < 0) 153 { 154 fprintf(stderr, "send icmp packet fail!\\n"); 155 continue; 156 } 157 158 sleep(1); 159 } 160 } 161 162 void ping_recv() 163 { 164 struct timeval tv; 165 tv.tv_usec = 200; //设置select函数的超时时间为200us 166 tv.tv_sec = 0; 167 fd_set read_fd; 168 char recv_buf[512]; 169 memset(recv_buf, 0 ,sizeof(recv_buf)); 170 while(alive) 171 { 172 int ret = 0; 173 FD_ZERO(&read_fd); 174 FD_SET(rawsock, &read_fd); 175 ret = select(rawsock+1, &read_fd, NULL, NULL, &tv); 176 switch(ret) 177 { 178 case -1: 179 fprintf(stderr,"fail to select!\\n"); 180 break; 181 case 0: 182 break; 183 default: 184 { 185 int size = recv(rawsock, recv_buf, sizeof(recv_buf), 0); 186 if(size < 0) 187 { 188 fprintf(stderr,"recv data fail!\\n"); 189 continue; 190 } 191 192 ret = icmp_unpack(recv_buf, size); //对接收的包进行解封 193 if(ret == -1) //不是属于自己的icmp包,丢弃不处理 194 { 195 continue; 196 } 197 recv_count++; //接收包计数 198 } 199 break; 200 } 201 202 } 203 } 204 205 void icmp_sigint(int signo) 206 { 207 alive = 0; 208 gettimeofday(&end_time, NULL); 209 time_interval = cal_time_offset(start_time, end_time); 210 } 211 212 void ping_stats_show() 213 { 214 long time = time_interval.tv_sec*1000+time_interval.tv_usec/1000; 215 /*注意除数不能为零,这里send_count有可能为零,所以运行时提示错误*/ 216 printf("%d packets transmitted, %d recieved, %d%c packet loss, time %ldms\\n", 217 send_count, recv_count, (send_count-recv_count)*100/send_count, \'%\', time); 218 } 219 220 221 int main(int argc, char* argv[]) 222 { 223 int size = 128*1024;//128k 224 struct protoent* protocol = NULL; 225 char dest_addr_str[80]; 226 memset(dest_addr_str, 0, 80); 227 unsigned int inaddr = 1; 228 struct hostent* host = NULL; 229 230 pthread_t send_id,recv_id; 231 232 if(argc < 2) 233 { 234 printf("Invalid IP ADDRESS!\\n"); 235 return -1; 236 } 237 238 protocol = getprotobyname("icmp"); //获取协议类型ICMP 239 if(protocol == NULL) 240 { 241 printf("Fail to getprotobyname!\\n"); 242 return -1; 243 } 244 245 memcpy(dest_addr_str, argv[1], strlen(argv[1])+1); 246 247 rawsock = socket(AF_INET,SOCK_RAW,protocol->p_proto); 248 if(rawsock < 0) 249 { 250 printf("Fail to create socket!\\n"); 251 return -1; 252 } 253 254 pid = getpid(); 255 256 setsockopt(rawsock, SOL_SOCKET, SO_RCVBUF, &size, sizeof(size)); //增大接收缓冲区至128K 257 258 bzero(&dest,sizeof(dest)); 259 260 dest.sin_family = AF_INET; 261 262 inaddr = inet_addr(argv[1]); 263 if(inaddr == INADDR_NONE) //判断用户输入的是否为IP地址还是域名 264 { 265 //输入的是域名地址 266 host = gethostbyname(argv[1]); 267 if(host == NULL) 268 { 269 printf("Fail to gethostbyname!\\n"); 270 return -1; 271 } 272 273 memcpy((char*)&dest.sin_addr, host->h_addr, host->h_length); 274 } 275 else 276 { 277 memcpy((char*)&dest.sin_addr, &inaddr, sizeof(inaddr));//输入的是IP地址 278 } 279 inaddr = dest.sin_addr.s_addr; 280 printf("PING %s, (%d.%d.%d.%d) 56(84) bytes of data.\\n",dest_addr_str, 281 (inaddr&0x000000ff), (inaddr&0x0000ff00)>>8, 282 (inaddr&0x00ff0000)>>16, (inaddr&0xff000000)>>24); 283 284 alive = 1; //控制ping的发送和接收 285 286 signal(SIGINT, icmp_sigint); 287 288 if(pthread_create(&send_id, NULL, (void*)ping_send, NULL)) 289 { 290 printf("Fail to create ping send thread!\\n"); 291 return -1; 292 } 293 294 if(pthread_create(&recv_id, NULL, (void*)ping_recv, NULL)) 295 { 296 printf("Fail to create ping recv thread!\\n"); 297 return -1; 298 } 299 300 pthread_join(send_id, NULL);//等待send ping线程结束后进程再结束 301 pthread_join(recv_id, NULL);//等待recv ping线程结束后进程再结束 302 303 ping_stats_show(); 304 305 close(rawsock); 306 return 0; 307 308 }
编译以及实验现象如下:
我的实验环境是两台服务器,发起ping的主机是172.0.5.183,被ping的主机是172.0.5.182,以下是我的两次实验现象(ping IP和ping 域名)。
我的实验环境是两台服务器,发起ping的主机是172.0.5.183,被ping的主机是172.0.5.182,以下是我的两次实验现象(ping IP和ping 域名)。
特别注意:
只有root用户才能利用socket()函数生成原始套接字,要让Linux的一般用户能执行以上程序,需进行如下的特别操作:用root登陆,编译以上程序gcc -lpthread -o ping ping.c
实验现象可以看出,PING是成功的,表明两主机间的网络是通的,发出的所有ping包都收到了回复。
下面是Linux系统自带的PING程序,我们可以对比一下我们设计的PING程序跟系统自带的PING程序有何不同。
以上是关于Linux编程之PING的实现的主要内容,如果未能解决你的问题,请参考以下文章