强化学习强化学习/增强学习/再励学习介绍

Posted 产业智能官

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了强化学习强化学习/增强学习/再励学习介绍相关的知识,希望对你有一定的参考价值。

Deepmind团队在17年12月5日发布的最新Alpha Zero中,非常重要的一种方法就是强化学习(reinforcement learning),又称再励学习、评价学习,是一种重要的机器学习方法,靠自身的经历进行学习。通过这种方式,RLS在行动-评价的环境中获得知识,改进行动方案以适应环境。正因为可以在小数据量的情况下靠自身的行动获得经验,所以Alpha Zero可以通过自我对弈进行学习提高。深度学习的一种分类方式:监督学习、无监督学习、半监督学习、强化学习。




基本原理

      强化学习是从动物学习、参数扰动自适应控制等理论发展而来,其基本原理是:如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强。Agent的目标是在每个离散状态发现最优策略以使期望的折扣奖赏和最大。强化学习把学习看作试探评价过程,Agent选择一个动作用于环境,环境接受该动作后状态发生变化,同时产生一个强化信号(奖或惩)反馈给Agent,Agent根据强化信号和环境当前状态再选择下一个动作,选择的原则是使受到正强化(奖)的概率增大。选择的动作不仅影响立即强化值,而且影响环境下一时刻的状态及最终的强化值。如图所示。

    简单来说就是给你一只小白鼠在迷宫里面,目的是找到出口,如果他走出了正确的步子,就会给它正反馈(糖),否则给出负反馈(点击),那么,当它走完所有的道路后。无论比把它放到哪儿,它都能通过以往的学习找到通往出口最正确的道路。

    RL最重要的3个特点在于:(1)基本是以一种闭环的形式;(2)不会直接指示选择哪种行动(actions);(3)一系列的actions和奖励信号(reward signals)都会影响之后较长的时间。   

    总的来说,RL与其他机器学习算法不同的地方在于:其中没有监督者,只有一个reward信号;反馈是延迟的,不是立即生成的;时间在RL中具有重要的意义;agent的行为会影响之后一系列的data。




模型设计

一种RL(reinforcement learning) 的框架:

--------------------------------

for


1. 观测到数据


2. 选择action


3. 得到损失


目标是最小化损失

--------------------------------



以吃豆子游戏为例,解释一下模型设计的主要元素,输入输出如下所示:

输入

状态(State)=环境,例如迷宫中的每一格是一个state,例如(1,3)

动作(Action)=在每个状态下,有什么行动是容许的,例如{上、下、左、右}

奖励(Rewards)=进入每个状态时,能带来正面或负面的价值,迷宫中的那格可能有食物(+1),也可能有怪兽(-100)

输出:方案(Policy)=在每个状态下,你会选择哪个行动?

以上四个元素(S A R P)就构成了一个强化学习系统


AlphaZero的设计中的主要算法之一就是强化学习,原文如下:


在RL问题中,有四个非常重要的概念: 

  (1)规则(policy) 

  Policy定义了agents在特定的时间特定的环境下的行为方式,可以视为是从环境状态到行为的映射,常用 π来表示。policy可以分为两类: 

  确定性的policy(Deterministic policy): a=π(s) 

  随机性的policy(Stochastic policy): π(a|s)=P[At=a|St=t] 

  其中,t是时间点,t=0,1,2,3,…… 

  St∈S,S是环境状态的集合,St代表时刻t的状态,s代表其中某个特定的状态; 

  At∈A(St),A(St)是在状态St下的actions的集合,At代表时刻t的行为,a代表其中某个特定的行为。 

  (2)奖励信号(a reward signal) 

  Reward就是一个标量值,是每个time step中环境根据agent的行为返回给agent的信号,reward定义了在该情景下执行该行为的好坏,agent可以根据reward来调整自己的policy。常用R来表示。 

  (3)值函数(value function) 

  Reward定义的是立即的收益,而value function定义的是长期的收益,它可以看作是累计的reward,常用v来表示。 

  (4)环境模型(a model of the environment) 

  整个Agent和Environment交互的过程可以用下图来表示: 



其中,t是时间点,t=0,1,2,3,…… 

  St∈S,S是环境状态的集合; 

  At∈A(St),A(St)是在状态St下的actions的集合; 

  Rt∈R∈R 是数值型的reward。




强化学习主要方法简介

        强化学习的方法可以从不同维度进行分类:

  • 是否需要对环境理解:model free和model-based

  • 基于概率(Policy-based)和基于价值(Value-based)的RL

  • 回合更新(monte-carlo update)和单步更新(temporal-difference update)的RL

  • 在线学习(on-policy)和离线学习(off-policy)

        无论从哪个角度分类,主要的方法有: policy gradients、q learning、sarsa 、 actor-critic、Monte-carlo learning、 Deep-Q-Network

         这里强烈推荐一个简洁清晰的介绍视频,6分钟直接明了的说明各种方法的特点:

莫烦python:http://v.youku.com/v_show/id_XMTkyMDY5MTk2OA==.html




应用案例及python代码

       有很多种场景应用的都是强化学习,AlphaZero最为出名,其他还有直升机特技飞行、机器人行走、玩游戏比人类还要好等等。

     举个栗子:我们想要实现的,就是一个这样的小车。小车有两个动作,在任何一个时刻可以向左运动,也可以向右运动,我们的目标是上小车走上山顶。一开始小车只能随机地左右运动,在训练了一段时间之后就可以很好地完成我们设定的目标了 。


     我们使用的算法就是最简单的Deep Q Learning算法,算法的流程如下图所示。



完整代码如下:


import tensorflow as tf
import numpy as np
import gym
import randomfrom collections
import deque EPISDOE = 10000STEP = 10000ENV_NAME = 'MountainCar-v0'BATCH_SIZE = 32INIT_EPSILON = 1.0FINAL_EPSILON = 0.1REPLAY_SIZE = 50000TRAIN_START_SIZE = 200GAMMA = 0.9def get_weights(shape):    weights = tf.truncated_normal( shape = shape, stddev= 0.01 )    return tf.Variable(weights)def get_bias(shape):    bias = tf.constant( 0.01, shape = shape )    return tf.Variable(bias)class DQN():    def __init__(self,env):        self.epsilon_step = ( INIT_EPSILON - FINAL_EPSILON ) / 10000        self.action_dim = env.action_space.n        print( env.observation_space )        self.state_dim = env.observation_space.shape[0]        self.neuron_num = 100        self.replay_buffer = deque()        self.epsilon = INIT_EPSILON        self.sess = tf.InteractiveSession()        self.init_network()        self.sess.run( tf.initialize_all_variables() )    def init_network(self):        self.input_layer = tf.placeholder( tf.float32, [ None, self.state_dim ] )        self.action_input = tf.placeholder( tf.float32, [None, self.action_dim] )        self.y_input = tf.placeholder( tf.float32, [None] )        w1 = get_weights( [self.state_dim, self.neuron_num] )        b1 = get_bias([self.neuron_num])        hidden_layer = tf.nn.relu( tf.matmul( self.input_layer, w1 ) + b1 )        w2 = get_weights( [ self.neuron_num, self.action_dim ] )        b2 = get_bias( [ self.action_dim ] )        self.Q_value = tf.matmul( hidden_layer, w2 ) + b2        value = tf.reduce_sum( tf.mul( self.Q_value, self.action_input ), reduction_indices = 1 )        self.cost = tf.reduce_mean( tf.square( value - self.y_input ) )        self.optimizer = tf.train.RMSPropOptimizer(0.00025,0.99,0.0,1e-6).minimize(self.cost)        return    def percieve(self, state, action, reward, next_state, done):        one_hot_action = np.zeros( [ self.action_dim ] )        one_hot_action[ action ] = 1        self.replay_buffer.append( [ state, one_hot_action, reward, next_state, done ] )        if len( self.replay_buffer ) > REPLAY_SIZE:            self.replay_buffer.popleft()        if len( self.replay_buffer ) > TRAIN_START_SIZE:            self.train()    def train(self):        mini_batch = random.sample( self.replay_buffer, BATCH_SIZE )        state_batch = [data[0] for data in mini_batch]        action_batch = [data[1] for data in mini_batch]        reward_batch = [ data[2] for data in mini_batch ]        next_state_batch = [ data[3] for data in mini_batch ]        done_batch = [ data[4] for data in mini_batch ]        y_batch = []        next_state_reward = self.Q_value.eval( feed_dict = self.input_layer : next_state_batch )        for i in range( BATCH_SIZE ):            if done_batch[ i ]:                y_batch.append( reward_batch[ i ] )            else:                y_batch.append( reward_batch[ i ] + GAMMA * np.max( next_state_reward[i] ) )        self.optimizer.run(            feed_dict =                self.input_layer:state_batch,                self.action_input:action_batch,                self.y_input:y_batch                    )        return    def get_greedy_action(self, state):        value = self.Q_value.eval( feed_dict = self.input_layer : [state] )[ 0 ]        return np.argmax( value )    def get_action(self, state):        if self.epsilon > FINAL_EPSILON:            self.epsilon -= self.epsilon_step        if random.random() < self.epsilon:            return random.randint( 0, self.action_dim - 1 )        else:            return self.get_greedy_action(state)def main():    env = gym.make(ENV_NAME)    agent = DQN( env )    for episode in range(EPISDOE):        total_reward = 0        state = env.reset()        for step in range(STEP):            env.render()            action = agent.get_action( state )            next_state, reward, done, _ = env.step( action )            total_reward += reward            agent.percieve( state, action, reward, next_state, done )            if done:                break            state = next_state        print 'total reward this episode is: ', total_rewardif __name__ == "__main__":    main()

如想了解算法关键设定,请参考CSDN杨思达zzz:http://blog.csdn.net/supercally/article/details/54767499




学习资源

        授人以渔,分享以下强化学习的相关学习资源:

1. Udacity课程1:Machine Learning: Reinforcement Learning,以及更深入的Udacity课程2:Reinforcement Learning

2. 经典教科书:Sutton & Barto Textbook: Reinforcement Learning: An Introduction 网页中可免费下载新版(第二版)初稿

3. UC Berkeley开发的经典的入门课程作业-编程玩“吃豆人”游戏:Berkeley Pac-Man Project (CS188 Intro to AI)

4. Stanford开发的入门课程作业-简化版无人车驾驶:Car Tracking (CS221 AI: Principles and Techniques)

5.CS 294: Deep Reinforcement Learning, Fall 2015 CS 294 Deep Reinforcement Learning, Fall 2015。课程安排和资料很好。推荐最为RL进阶学习。

        注:以上Berkeley和Stanford的课程项目都是精心开发的课程作业,已经搭建好了基础代码,学习者可专注于实现核心算法,并且有自动评分程序(auto-grader)可以自测。




参考资料:

强化学习是啥 意思

关于强化学习需要了解的知识

增强学习or强化学习概述

强化学习1-1-0 强化学习介绍强化学习1-1-0 强化学习介绍

强化学习笔记-01强化学习介绍

强化学习笔记-01强化学习介绍