OpenCV自适应直方图均衡CLAHE C++源代码分享
Posted LaoYuanPython
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV自适应直方图均衡CLAHE C++源代码分享相关的知识,希望对你有一定的参考价值。
一、引言
最近收到几个网友提供OpenCV中CLAHE的源代码的请求,在此直接将OpenCV4.54版本CLAHE.CPP的源码分享出来。
二、OpenCV源代码的下载
下载地址:https://sourceforge.net/projects/opencvlibrary/files/
有3.4.10–4.5.4的版本,但下载很慢,老猿费了很大的劲,大家可以考虑专门的下载工具下载。如果实在下不下来,请关注老猿Python的微信公号给老猿发消息。
三、CLAHE C++源代码
/*M///
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, NVIDIA Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
// ----------------------------------------------------------------------
// CLAHE
#ifdef HAVE_OPENCL
namespace clahe
static bool calcLut(cv::InputArray _src, cv::OutputArray _dst,
const int tilesX, const int tilesY, const cv::Size tileSize,
const int clipLimit, const float lutScale)
cv::ocl::Kernel k("calcLut", cv::ocl::imgproc::clahe_oclsrc);
if(k.empty())
return false;
cv::UMat src = _src.getUMat();
_dst.create(tilesX * tilesY, 256, CV_8UC1);
cv::UMat dst = _dst.getUMat();
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
size_t localThreads[3] = 32, 8, 1 ;
size_t globalThreads[3] = tilesX * localThreads[0], tilesY * localThreads[1], 1 ;
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
idx = k.set(idx, clipLimit);
k.set(idx, lutScale);
return k.run(2, globalThreads, localThreads, false);
static bool transform(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _lut,
const int tilesX, const int tilesY, const cv::Size & tileSize)
cv::ocl::Kernel k("transform", cv::ocl::imgproc::clahe_oclsrc);
if(k.empty())
return false;
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
cv::UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
cv::UMat dst = _dst.getUMat();
cv::UMat lut = _lut.getUMat();
size_t localThreads[3] = 32, 8, 1 ;
size_t globalThreads[3] = (size_t)src.cols, (size_t)src.rows, 1 ;
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(lut));
idx = k.set(idx, src.cols);
idx = k.set(idx, src.rows);
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
k.set(idx, tilesY);
return k.run(2, globalThreads, localThreads, false);
#endif
namespace
template <class T, int histSize, int shift>
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
public:
CLAHE_CalcLut_Body(const cv::Mat& src, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& clipLimit, const float& lutScale) :
src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), clipLimit_(clipLimit), lutScale_(lutScale)
void operator ()(const cv::Range& range) const CV_OVERRIDE;
private:
cv::Mat src_;
mutable cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int clipLimit_;
float lutScale_;
;
template <class T, int histSize, int shift>
void CLAHE_CalcLut_Body<T,histSize,shift>::operator ()(const cv::Range& range) const
T* tileLut = lut_.ptr<T>(range.start);
const size_t lut_step = lut_.step / sizeof(T);
for (int k = range.start; k < range.end; ++k, tileLut += lut_step)
const int ty = k / tilesX_;
const int tx = k % tilesX_;
// retrieve tile submatrix
cv::Rect tileROI;
tileROI.x = tx * tileSize_.width;
tileROI.y = ty * tileSize_.height;
tileROI.width = tileSize_.width;
tileROI.height = tileSize_.height;
const cv::Mat tile = src_(tileROI);
// calc histogram
cv::AutoBuffer<int> _tileHist(histSize);
int* tileHist = _tileHist.data();
std::fill(tileHist, tileHist + histSize, 0);
int height = tileROI.height;
const size_t sstep = src_.step / sizeof(T);
for (const T* ptr = tile.ptr<T>(0); height--; ptr += sstep)
int x = 0;
for (; x <= tileROI.width - 4; x += 4)
int t0 = ptr[x], t1 = ptr[x+1];
tileHist[t0 >> shift]++; tileHist[t1 >> shift]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
tileHist[t0 >> shift]++; tileHist[t1 >> shift]++;
for (; x < tileROI.width; ++x)
tileHist[ptr[x] >> shift]++;
// clip histogram
if (clipLimit_ > 0)
// how many pixels were clipped
int clipped = 0;
for (int i = 0; i < histSize; ++i)
if (tileHist[i] > clipLimit_)
clipped += tileHist[i] - clipLimit_;
tileHist[i] = clipLimit_;
// redistribute clipped pixels
int redistBatch = clipped / histSize;
int residual = clipped - redistBatch * histSize;
for (int i = 0; i < histSize; ++i)
tileHist[i] += redistBatch;
if (residual != 0)
int residualStep = MAX(histSize / residual, 1);
for (int i = 0; i < histSize && residual > 0; i += residualStep, residual--)
tileHist[i]++;
// calc Lut
int sum = 0;
for (int i = 0; i < histSize; ++i)
sum += tileHist[i];
tileLut[i] = cv::saturate_cast<T>(sum * lutScale_);
template <class T, int shift>
class CLAHE_Interpolation_Body : public cv::ParallelLoopBody
public:
CLAHE_Interpolation_Body(const cv::Mat& src, const cv::Mat& dst, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& tilesY) :
src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY)
buf.allocate(src.cols << 2);
ind1_p = buf.data();
ind2_p = ind1_p + src.cols;
xa_p = (float *)(ind2_p + src.cols);
xa1_p = xa_p + src.cols;
int lut_step = static_cast<int>(lut_.step / sizeof(T));
float inv_tw = 1.0f / tileSize_.width;
for (int x = 0; x < src.cols; ++x)
float txf = x * inv_tw - 0.5f;
int tx1 = cvFloor(txf);
int tx2 = tx1 + 1;
xa_p[x] = txf - tx1;
xa1_p[x] = 1.0f - xa_p[x];
tx1 = std::max(tx1, 0);
tx2 = std::min(tx2, tilesX_ - 1);
ind1_p[x] = tx1 * lut_step;
ind2_p[x] = tx2 * lut_step;
void operator ()(const cv::Range& range) const CV_OVERRIDE;
private:
cv::Mat src_;
mutable cv::Mat dst_;
cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
cv::AutoBuffer<int> buf;
int * ind1_p, * ind2_p;
float * xa_p, * xa1_p;
;
template <class T, int shift>
void CLAHE_Interpolation_Body<T, shift>::operator ()(const cv::Range& range) const
float inv_th = 1.0f / tileSize_.height;
for (int y = range.start; y < range.end; ++y)
const T* srcRow = src_.ptr<T>(y);
T* dstRow = dst_.ptr<T>(y);
float tyf = y * inv_th - 0.5f;
int ty1 = cvFloor(tyf);
int ty2 = ty1 + 1;
float ya = tyf - ty1, ya1 = 1.0f - ya;
ty1 = std::max(ty1, 0);
ty2 = std::min(ty2, tilesY_ - 1);
const T* lutPlane1 = lut_.ptr<T>(ty1 * tilesX_);
const T* lutPlane2 = lut_.ptr<T>(ty2 * tilesX_);
for (int x = 0; x < src_.cols; ++x)
int srcVal = srcRow[x] >> shift;
int ind1 = ind1_p[x] + srcVal;
int ind2 = ind2_p[x] + srcVal;
float res = (lutPlane1[ind1] * xa1_p[x] + lutPlane1[ind2] * xa_p[x]) * ya1 +
(lutPlane2[ind1] * xa1_p[x] + lutPlane2[ind2] * xa_p[x]) * ya;
dstRow[x] = cv::saturate_cast<T>(res) << shift;
class CLAHE_Impl CV_FINAL : public cv::CLAHE
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
void apply(cv::InputArray src, cv::OutputArray dst) CV_OVERRIDE;
void setClipLimit(double clipLimit) CV_OVERRIDE;
double getClipLimit() const CV_OVERRIDE;
void setTilesGridSize(cv::Size tileGridSize) CV_OVERRIDE;
cv::Size getTilesGridSize() const CV_OVERRIDE;
void collectGarbage() CV_OVERRIDE;
private:
double clipLimit_;
int tilesX_;
int tilesY_;
cv::Mat srcExt_;
cv::Mat lut_;
以上是关于OpenCV自适应直方图均衡CLAHE C++源代码分享的主要内容,如果未能解决你的问题,请参考以下文章
OpenCV自适应直方图均衡CLAHE的clipLimit的含义及理解
OpenCV自适应直方图均衡CLAHE图像和分块大小不能整除的处理
OpenCV-Python自适应直方图均衡类CLAHE及方法详解