深度学习驱动的知识追踪研究综述

Posted 人工智能博士

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习驱动的知识追踪研究综述相关的知识,希望对你有一定的参考价值。

点上方人工智能算法与Python大数据获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

仅做学术分享,如有侵权,联系删除

转载于 :专知

随着教育信息化程度的不断加深,以预测学生知识状态为目标的知识追踪正成为个性化教育中一项重要且富有挑战性的任务。知识追踪作为一项教育数据挖掘的时间序列任务,与深度学习模型强大的特征提取和建模能力相结合,在处理顺序任务时具有得天独厚的优势。为此,简要分析传统知识追踪模型的特点及局限性,以深度知识追踪发展历程为主线,总结基于循环神经网络、记忆增强神经网络、图神经网络的知识追踪模型及其改进模型,并对该领域的已有模型按照方法策略归类整理。同时梳理了可供研究者使用的公开数据集和模型评估指标,比较和分析不同建模方法的特点。对基于深度学习的知识追踪的未来发展方向进行探讨和展望,奠定进一步深入基于深度知识追踪研究的基础。

http://cea.ceaj.org/CN/abstract/abstract40002.shtml

---------♥---------

声明:本内容来源网络,版权属于原作者

图片来源网络,不代表本公众号立场。如有侵权,联系删除

AI博士私人微信,还有少量空位

如何画出漂亮的深度学习模型图?

如何画出漂亮的神经网络图?

一文读懂深度学习中的各种卷积

点个在看支持一下吧

以上是关于深度学习驱动的知识追踪研究综述的主要内容,如果未能解决你的问题,请参考以下文章

35页自然语言处理深度学习综述,带你纵览NLP知识全貌

综述 | 图深度学习医疗诊断与分析

荐读深度神经网络知识蒸馏综述

40+篇必看2020综述论文《深度学习/机器学习/知识图谱/NLP/CV》大集合

适用于深度学习的高性能系统架构综述

50+篇必看2020综述论文《深度学习/机器学习/知识图谱/NLP/CV》大集合