实战小项目之基于yolo的目标检测web api实现

Posted 悠悠南山下

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实战小项目之基于yolo的目标检测web api实现相关的知识,希望对你有一定的参考价值。

  上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解。互联网最开始的构架多是cs构架,浏览器兴起以后,变成了bs,最近几年,随着移动互联网的兴起,cs构架再次火了起来,有了一个新的概念,web service。

  最近两天,想结合自己这段时间学的东西,实现一个cs构架的service接口。说一下大体流程,client上传图片到http服务器,http后台使用yolo进行图片的检测,之后将检测结果封装成json返回到client,client进行解析显示。

client

  使用libcurl作为http请求工具,使用rapidjson进行结果json数据的解析

  上传图片时,没有使用标准的http多媒体方式,而是使用post 二进制流的方式,比较笨,有待改进。

server

  物体检测识别使用yolo c语言版本,修改原工程darknet的main,引入自己的main,实现直接检测的功能,main的流程:

导入yolo参数--必要初始化--fork子进程--安装信号--初始化fifo--sleep等待图片上传           接收信号唤醒--读取图像--预测-写入json文件--fifo写唤醒子进程

             |                             |                   |

           执行libevent实现的http server--eventloop监听--有文件上传结束--signal 父进程--阻塞在fifo读                         读取json,http返回

 

具体代码

client

extern "C"{
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>

//iso
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//others
#include "curl/curl.h"
}

//c++
#include <iostream>
#include <string>
#include <fstream>
#include "rapidjson/document.h"
#include "rapidjson/stringbuffer.h"
#include "rapidjson/writer.h"

#define psln(x) std::cout << #x " = " << (x) << std::endl

using namespace std;

size_t WriteFunction(void *input, size_t uSize, size_t uCount, void *arg) {
    size_t uLen = uSize * uCount;
    string *pStr = (string*) (arg);
    pStr->append((char*) (input), uLen);
    return uLen;
}

int main(int argc,char **argv){
    if(argc<3){
        printf("usage:./a.out uri pic\\n");
        exit(-1);
    }
    CURL *pCurl = NULL;
    CURLcode code;
    code = curl_global_init(CURL_GLOBAL_DEFAULT);
    if (code != CURLE_OK) {
        cout << "curl global init err" << endl;
        return -1;
    }
    pCurl = curl_easy_init();
    if (pCurl == NULL) {
        cout << "curl easy init err" << endl;
        return -1;
    }

    curl_slist *pHeaders = NULL;
    string sBuffer;
    string header = "username:tla001";
    pHeaders = curl_slist_append(pHeaders, header.c_str());

    ifstream in;
    in.open(argv[2], ios::in | ios::binary);
    if (!in.is_open()) {
        printf("open err\\n");
        exit(-1);
    }
    in.seekg(0, ios_base::end);
    const size_t maxSize = in.tellg();
    in.seekg(0);
    char * picBin = new char[maxSize];
    in.read(picBin, maxSize);
    in.close();
    cout << maxSize << endl;

    size_t sendSize = maxSize + sizeof(size_t);
    char *sendBuff = new char[sendSize];
    //    sprintf(sendBuff, "%d", maxSize);
    memcpy(sendBuff, &maxSize, sizeof(size_t));
    //    size_t tmp = 0;
    //    memcpy(&tmp, sendBuff, sizeof(size_t));
    //    cout << "tmp=" << tmp << endl;
    memcpy(sendBuff + sizeof(size_t), picBin, maxSize);
    curl_easy_setopt(pCurl, CURLOPT_URL, argv[1]);
    curl_easy_setopt(pCurl, CURLOPT_HTTPHEADER, pHeaders);
    curl_easy_setopt(pCurl, CURLOPT_TIMEOUT, 20);
    //    curl_easy_setopt(pCurl, CURLOPT_HEADER, 1);
    curl_easy_setopt(pCurl, CURLOPT_POST, 1L);
    curl_easy_setopt(pCurl, CURLOPT_POSTFIELDS, sendBuff);
    curl_easy_setopt(pCurl, CURLOPT_POSTFIELDSIZE, sendSize);
    curl_easy_setopt(pCurl, CURLOPT_WRITEFUNCTION, &WriteFunction);
    curl_easy_setopt(pCurl, CURLOPT_WRITEDATA, &sBuffer);

    code = curl_easy_perform(pCurl);
    if (code != CURLE_OK) {
        cout << "curl perform err,retcode="<<code << endl;
        return -1;
    }
    long retcode = 0;
    code = curl_easy_getinfo(pCurl, CURLINFO_RESPONSE_CODE, &retcode);
    if (code != CURLE_OK) {
        cout << "curl perform err" << endl;
        return -1;
    }
    //cout << "[http return code]: " << retcode << endl;
    //cout << "[http context]: " << endl << sBuffer << endl;
    using rapidjson::Document;
    Document doc;
    doc.Parse<0>(sBuffer.c_str());
    if (doc.HasParseError()) {
        rapidjson::ParseErrorCode code = doc.GetParseError();
        psln(code);
        return -1;
    }
    using rapidjson::Value;
    Value &content = doc["content"];
    if (content.IsArray()) {
        for (int i = 0; i < content.Size(); i++) {
            Value &v = content[i];
            assert(v.IsObject());
            cout<<"object "<<"["<<i+1<<"]"<<endl;
            if (v.HasMember("class") && v["class"].IsString()) {
                cout <<"\\t[class]:"<<v["class"].GetString()<<endl;
            }
            if (v.HasMember("prob") && v["prob"].IsDouble()) {
                cout <<"\\t[prob]:"<<v["prob"].GetDouble()<<endl;
            }
            cout<<"\\t***************************"<<endl;
            if (v.HasMember("left") && v["left"].IsInt()) {
                cout <<"\\t[left]:"<<v["left"].GetInt()<<endl;
            }
            if (v.HasMember("right") && v["right"].IsInt()) {
                cout <<"\\t[right]:"<<v["right"].GetInt()<<endl;
            }
            if (v.HasMember("top") && v["top"].IsInt()) {
                cout <<"\\t[top]:"<<v["top"].GetInt()<<endl;
            }
            if (v.HasMember("bot") && v["bot"].IsInt()) {
                cout <<"\\t[bot]:"<<v["bot"].GetInt()<<endl;
            }
            cout<<endl;

        }
    }

    delete[] picBin;
    delete[] sendBuff;
    curl_easy_cleanup(pCurl);

    curl_global_cleanup();
    return 0;
}

 

server

main.c

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "parser.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "connected_layer.h"

extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
extern void run_voxel(int argc, char **argv);
extern void run_yolo(int argc, char **argv);
extern void run_detector(int argc, char **argv);
extern void run_coco(int argc, char **argv);
extern void run_writing(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
extern void run_nightmare(int argc, char **argv);
extern void run_dice(int argc, char **argv);
extern void run_compare(int argc, char **argv);
extern void run_classifier(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
extern void run_char_rnn(int argc, char **argv);
extern void run_vid_rnn(int argc, char **argv);
extern void run_tag(int argc, char **argv);
extern void run_cifar(int argc, char **argv);
extern void run_go(int argc, char **argv);
extern void run_art(int argc, char **argv);
extern void run_super(int argc, char **argv);
extern void run_lsd(int argc, char **argv);

void average(int argc, char *argv[])
{
    char *cfgfile = argv[2];
    char *outfile = argv[3];
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    network sum = parse_network_cfg(cfgfile);

    char *weightfile = argv[4];   
    load_weights(&sum, weightfile);

    int i, j;
    int n = argc - 5;
    for(i = 0; i < n; ++i){
        weightfile = argv[i+5];   
        load_weights(&net, weightfile);
        for(j = 0; j < net.n; ++j){
            layer l = net.layers[j];
            layer out = sum.layers[j];
            if(l.type == CONVOLUTIONAL){
                int num = l.n*l.c*l.size*l.size;
                axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
                axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
                if(l.batch_normalize){
                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
                }
            }
            if(l.type == CONNECTED){
                axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
                axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
            }
        }
    }
    n = n+1;
    for(j = 0; j < net.n; ++j){
        layer l = sum.layers[j];
        if(l.type == CONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
            scal_cpu(l.n, 1./n, l.biases, 1);
            scal_cpu(num, 1./n, l.weights, 1);
                if(l.batch_normalize){
                    scal_cpu(l.n, 1./n, l.scales, 1);
                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
                }
        }
        if(l.type == CONNECTED){
            scal_cpu(l.outputs, 1./n, l.biases, 1);
            scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
        }
    }
    save_weights(sum, outfile);
}

void speed(char *cfgfile, int tics)
{
    if (tics == 0) tics = 1000;
    network net = parse_network_cfg(cfgfile);
    set_batch_network(&net, 1);
    int i;
    time_t start = time(0);
    image im = make_image(net.w, net.h, net.c*net.batch);
    for(i = 0; i < tics; ++i){
        network_predict(net, im.data);
    }
    double t = difftime(time(0), start);
    printf("\\n%d evals, %f Seconds\\n", tics, t);
    printf("Speed: %f sec/eval\\n", t/tics);
    printf("Speed: %f Hz\\n", tics/t);
}

void operations(char *cfgfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    int i;
    long ops = 0;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
        } else if(l.type == CONNECTED){
            ops += 2l * l.inputs * l.outputs;
        }
    }
    printf("Floating Point Operations: %ld\\n", ops);
    printf("Floating Point Operations: %.2f Bn\\n", (float)ops/1000000000.);
}

void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    int oldn = net.layers[net.n - 2].n;
    int c = net.layers[net.n - 2].c;
    scal_cpu(oldn*c, .1, net.layers[net.n - 2].weights, 1);
    scal_cpu(oldn, 0, net.layers[net.n - 2].biases, 1);
    net.layers[net.n - 2].n = 9418;
    net.layers[net.n - 2].biases += 5;
    net.layers[net.n - 2].weights += 5*c;
    if(weightfile){
        load_weights(&net, weightfile);
    }
    net.layers[net.n - 2].biases -= 5;
    net.layers[net.n - 2].weights -= 5*c;
    net.layers[net.n - 2].n = oldn;
    printf("%d\\n", oldn);
    layer l = net.layers[net.n - 2];
    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
    *net.seen = 0;
    save_weights(net, outfile);
}

void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights_upto(&net, weightfile, 0, net.n);
        load_weights_upto(&net, weightfile, l, net.n);
    }
    *net.seen = 0;
    save_weights_upto(net, outfile, net.n);
}

void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights_upto(&net, weightfile, 0, max);
    }
    *net.seen = 0;
    save_weights_upto(net, outfile, max);
}

#include "convolutional_layer.h"
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            rescale_weights(l, 2, -.5);
            break;
        }
    }
    save_weights(net, outfile);
}

void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            rgbgr_weights(l);
            break;
        }
    }
    save_weights(net, outfile);
}

void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if (weightfile) {
        load_weights(&net, weightfile);
    }
    int i;
    for (i = 0; i < net.n; ++i) {
        layer l = net.layers[i];
        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
            denormalize_convolutional_layer(l);
        }
        if (l.type == CONNECTED && l.batch_normalize) {
            denormalize_connected_layer(l);
        }
        if (l.type == GRU && l.batch_normalize) {
            denormalize_connected_layer(*l.input_z_layer);
            denormalize_connected_layer(*l.input_r_layer);
            denormalize_connected_layer(*l.input_h_layer);
            denormalize_connected_layer(*l.state_z_layer);
            denormalize_connected_layer(*l.state_r_layer);
            denormalize_connected_layer(*l.state_h_layer);
        }
    }
    save_weights(net, outfile);
}

layer normalize_layer(layer l, int n)
{
    int j;
    l.batch_normalize=1;
    l.scales = calloc(n, sizeof(float));
    for(j = 0; j < n; ++j){
        l.scales[j] = 1;
    }
    l.rolling_mean = calloc(n, sizeof(float));
    l.rolling_variance = calloc(n, sizeof(float));
    return l;
}

void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL && !l.batch_normalize){
            net.layers[i] = normalize_layer(l, l.n);
        }
        if (l.type == CONNECTED && !l.batch_normalize) {
            net.layers[i] = normalize_layer(l, l.outputs);
        }
        if (l.type == GRU && l.batch_normalize) {
            *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
            *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
            *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
            *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
            *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
            *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
            net.layers[i].batch_normalize=1;
        }
    }
    save_weights(net, outfile);
}

void statistics_net(char *cfgfile, char *weightfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if (weightfile) {
        load_weights(&net, weightfile);
    }
    int i;
    for (i = 0; i < net.n; ++i) {
        layer l = net.layers[i];
        if (l.type == CONNECTED && l.batch_normalize) {
            printf("Connected Layer %d\\n", i);
            statistics_connected_layer(l);
        }
        if (l.type == GRU && l.batch_normalize) {
            printf("GRU Layer %d\\n", i);
            printf("Input Z\\n");
            statistics_connected_layer(*l.input_z_layer);
            printf("Input R\\n");
            statistics_connected_layer(*l.input_r_layer);
            printf("Input H\\n");
            statistics_connected_layer(*l.input_h_layer);
            printf("State Z\\n");
            statistics_connected_layer(*l.state_z_layer);
            printf("State R\\n");
            statistics_connected_layer(*l.state_r_layer);
            printf("State H\\n");
            statistics_connected_layer(*l.state_h_layer);
        }
        printf("\\n");
    }
}

void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network net = parse_network_cfg(cfgfile);
    if (weightfile) {
        load_weights(&net, weightfile);
    }
    int i;
    for (i = 0; i < net.n; ++i) {
        layer l = net.layers[i];
        if (l.type == CONVOLUTIONAL && l.batch_normalize) {
            denormalize_convolutional_layer(l);
            net.layers[i].batch_normalize=0;
        }
        if (l.type == CONNECTED && l.batch_normalize) {
            denormalize_connected_layer(l);
            net.layers[i].batch_normalize=0;
        }
        if (l.type == GRU && l.batch_normalize) {
            denormalize_connected_layer(*l.input_z_layer);
            denormalize_connected_layer(*l.input_r_layer);
            denormalize_connected_layer(*l.input_h_layer);
            denormalize_connected_layer(*l.state_z_layer);
            denormalize_connected_layer(*l.state_r_layer);
            denormalize_connected_layer(*l.state_h_layer);
            l.input_z_layer->batch_normalize = 0;
            l.input_r_layer->batch_normalize = 0;
            l.input_h_layer->batch_normalize = 0;
            l.state_z_layer->batch_normalize = 0;
            l.state_r_layer->batch_normalize = 0;
            l.state_h_layer->batch_normalize = 0实战小项目之ffmpeg推流yolo视频实时检测

YOLO_Online 将深度学习最火的目标检测做成在线服务实战经验分享

YOLO 目标检测实战项目『原理篇』

PyTorch深度学习实战 | 基于YOLO V3的安全帽佩戴检测

目标检测 YOLO系列——YOLO v1

小白同学高效入门目标检测之YOLO实战系列精选 | ❤️1024专刊❤️