R语言使用caret包构建GBM模型:在模型最优参数已知的情况下,拟合整个训练集,而无需进行任何重采样或参数调优
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言使用caret包构建GBM模型:在模型最优参数已知的情况下,拟合整个训练集,而无需进行任何重采样或参数调优相关的知识,希望对你有一定的参考价值。
R语言使用caret包构建GBM模型:在模型最优参数已知的情况下,拟合整个训练集,而无需进行任何重采样或参数调优
目录
以上是关于R语言使用caret包构建GBM模型:在模型最优参数已知的情况下,拟合整个训练集,而无需进行任何重采样或参数调优的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用caret包对GBM模型进行参数调优实战:Model Training and Parameter Tuning
R语言使用caret包的train函数构建多元自适应回归样条(MARS)模型查看模型输出结构最优超参数及对应模型评估指标
R语言基于h2o包构建二分类模型:使用h2o.gbm构建梯度提升机模型GBM使用h2o.auc计算模型的AUC值
R语言使用caret包对GBM模型参数调优(自定义调优的评估指标,例如ROC指标):抽取预测标签及类概率抽样ROC的指标并绘制密度图
R语言使用caret包对GBM模型参数调优SVM模型自定义参数调优RDF模型自定义参数调优(例如,ROC)重采样对多个模型的性能差异进行统计描述可视化多模型在多指标下的性能对比分析
R语言使用caret包对GBM模型自定义参数调优:自定义优化参数网格可视化核心参数与评估指标关系Accuracy与树的深度个数的关系Kappa与树的深度个数的关系