R语言构建混淆矩阵(仿真数据)并基于混淆矩阵(confusion matrix)计算并计算AccuracyPrecisionRecall(sensitivity)F1Specificity指标

Posted Data+Science+Insight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言构建混淆矩阵(仿真数据)并基于混淆矩阵(confusion matrix)计算并计算AccuracyPrecisionRecall(sensitivity)F1Specificity指标相关的知识,希望对你有一定的参考价值。

R语言构建混淆矩阵(仿真数据)并基于混淆矩阵(confusion matrix)计算并计算Accuracy、Precision、Recall(sensitivity)、F1、Specificity指标

目录

以上是关于R语言构建混淆矩阵(仿真数据)并基于混淆矩阵(confusion matrix)计算并计算AccuracyPrecisionRecall(sensitivity)F1Specificity指标的主要内容,如果未能解决你的问题,请参考以下文章

R语言构建logistic回归模型并评估模型:构建基于混淆矩阵计算分类评估指标的自定义函数阳性样本比例(垃圾邮件比例)变化对应的分类器性能的变化基于数据阳性样本比例选择合适的分类评估指标

R语言加载UCI糖尿病数据集并启动Rattle GUI调用party包中的ctree函数构建条件推理树模型Rattle混淆矩阵使用R自定义编写函数通过混淆矩阵计算特异度敏感度PPVNPV

R语言使用yardstick包的conf_mat函数计算多分类(Multiclass)模型的混淆矩阵并使用summary函数基于混淆矩阵输出分类模型评估的其它详细指标(kappanpv等13个)

R语言构建文本分类模型:文本数据预处理构建词袋模型(bag of words)构建xgboost文本分类模型xgboost模型预测推理并使用混淆矩阵评估模型可视化模型预测的概率分布

R语言使用party包中的cforest函数基于条件推理决策树(Conditional inference trees)构建随机森林使用varimp函数查看特征重要度使用table函数计算混淆矩阵

R语言使用caret包的predict函数对模型在测试集上的表现进行推理和预测计算模型的混淆矩阵设置参数mode计算基于混淆矩阵产生的衍生指标(特异度敏感度F1ppvnpv等)