Java全栈JavaSE:28.JDK1.8新特性
Posted new nm个对象
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java全栈JavaSE:28.JDK1.8新特性相关的知识,希望对你有一定的参考价值。
Java8新特性
Java8的新特征有很多,之前我们在学习接口时,学习了接口的静态方法和默认方法,在学习常用类时,学习了新版的日期时间API。今天我们来学习Java8最具革命性的两个新特性:Lambda表达式和StreamAPI。然后带领大家用Optioanl类解决最令人头疼的空指针异常。
1 Lambda表达式
1.1 函数式编程思想
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8o5kr2dx-1637489119058)(imgs/03-Overview.png)]
在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。编程中的函数,也有类似的概念,你调用我的时候,给我实参为形参赋值,然后通过运行方法体,给你返回一个结果。对于调用者来做,关注这个方法具备什么样的功能。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做。
-
面向对象的思想:
- 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情.
-
函数式编程思想:
- 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程
Java8引入了Lambda表达式之后,Java也开始支持函数式编程。
Lambda表达式不是Java最早使用的,很多语言就支持Lambda表达式,例如:C++,C#,Python,Scala等。如果有Python或者javascript的语言基础,对理解Lambda表达式有很大帮助,可以这么说lambda表达式其实就是实现SAM接口的语法糖,使得Java也算是支持函数式编程的语言。Lambda写的好可以极大的减少代码冗余,同时可读性也好过冗长的匿名内部类。
备注:“语法糖”是指使用更加方便,但是原理不变的代码语法。例如在遍历集合时使用的for-each语法,其实
底层的实现原理仍然是迭代器,这便是“语法糖”。从应用层面来讲,Java中的Lambda可以被当做是匿名内部
类的“语法糖”,但是二者在原理上是不同的。
冗余的匿名内部类
当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable
接口来定义任务内容,并使用java.lang.Thread
类来启动该线程。代码如下:
public class Demo01Runnable
public static void main(String[] args)
// 匿名内部类
Runnable task = new Runnable()
@Override
public void run() // 覆盖重写抽象方法
System.out.println("多线程任务执行!");
;
new Thread(task).start(); // 启动线程
本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable
接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。
代码分析:
对于Runnable
的匿名内部类用法,可以分析出几点内容:
Thread
类需要Runnable
接口作为参数,其中的抽象run
方法是用来指定线程任务内容的核心;- 为了指定
run
的方法体,不得不需要Runnable
接口的实现类; - 为了省去定义一个
RunnableImpl
实现类的麻烦,不得不使用匿名内部类; - 必须覆盖重写抽象
run
方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错; - 而实际上,似乎只有方法体才是关键所在。
编程思想转换
做什么,而不是谁来做,怎么做
我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将run
方法体内的代码传递给Thread
类知晓。
传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。那,有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达到目的,过程与形式其实并不重要。
生活举例:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wxSeVrts-1637489119061)(imgs/01-%E4%BA%A4%E9%80%9A%E6%96%B9%E5%BC%8F.png)]
当我们需要从北京到上海时,可以选择高铁、汽车、骑行或是徒步。我们的真正目的是到达上海,而如何才能到达上海的形式并不重要,所以我们一直在探索有没有比高铁更好的方式——搭乘飞机。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eINQodW7-1637489119062)(imgs/02-Lambda.png)]
而现在这种飞机(甚至是飞船)已经诞生:2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式的重量级新特性,为我们打开了新世界的大门。
体验Lambda的更优写法
借助Java 8的全新语法,上述Runnable
接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:
public class Demo02LambdaRunnable
public static void main(String[] args)
new Thread(() -> System.out.println("多线程任务执行!")).start(); // 启动线程
这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,而线程任务的内容以一种更加简洁的形式被指定。
不再有“不得不创建接口对象”的束缚,不再有“抽象方法覆盖重写”的负担,就是这么简单!
1.2 函数式接口
lambda表达式其实就是实现SAM接口的语法糖,所谓SAM接口就是Single Abstract Method,即该接口中只有一个抽象方法需要实现,当然该接口可以包含其他非抽象方法。
其实只要满足“SAM”特征的接口都可以称为函数式接口,都可以使用Lambda表达式,但是如果要更明确一点,最好在声明接口时,加上@FunctionalInterface。一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。
之前学过的SAM接口中,标记了@FunctionalInterface的函数式接口的有:Runnable,Comparator,FileFilter。
Java8在java.util.function新增了很多函数式接口:主要分为四大类,消费型、供给型、判断型、功能型。基本可以满足我们的开发需求。当然你也可以定义自己的函数式接口。
1、自定义函数式接口
只要确保接口中有且仅有一个抽象方法即可:
修饰符 interface 接口名称
public abstract 返回值类型 方法名称(可选参数信息);
// 其他非抽象方法内容
接口当中抽象方法的 public abstract 是可以省略的
例如:声明一个计算器Calculator
接口,内含抽象方法calc
可以对两个int数字进行计算,并返回结果:
public interface Calculator
int calc(int a, int b);
在测试类中,声明一个如下方法:
public static void invokeCalc(int a, int b, Calculator calculator)
int result = calculator.calc(a, b);
System.out.println("结果是:" + result);
下面进行测试:
public static void main(String[] args)
invokeCalc(1, 2, (int a,int b)-> return a+b;);
invokeCalc(1, 2, (int a,int b)-> return a-b;);
invokeCalc(1, 2, (int a,int b)-> return a*b;);
invokeCalc(1, 2, (int a,int b)-> return a/b;);
invokeCalc(1, 2, (int a,int b)-> return a%b;);
invokeCalc(1, 2, (int a,int b)-> return a>b?a:b;);
2、消费型接口
消费型接口的抽象方法特点:有形参,但是返回值类型是void
接口名 | 抽象方法 | 描述 |
---|---|---|
Consumer | void accept(T t) | 接收一个对象用于完成功能 |
BiConsumer<T,U> | void accept(T t, U u) | 接收两个对象用于完成功能 |
DoubleConsumer | void accept(double value) | 接收一个double值 |
IntConsumer | void accept(int value) | 接收一个int值 |
LongConsumer | void accept(long value) | 接收一个long值 |
ObjDoubleConsumer | void accept(T t, double value) | 接收一个对象和一个double值 |
ObjIntConsumer | void accept(T t, int value) | 接收一个对象和一个int值 |
ObjLongConsumer | void accept(T t, long value) | 接收一个对象和一个long值 |
3、供给型接口
这类接口的抽象方法特点:无参,但是无返回值
接口名 | 抽象方法 | 描述 |
---|---|---|
Supplier | T get() | 返回一个对象 |
BooleanSupplier | boolean getAsBoolean() | 返回一个boolean值 |
DoubleSupplier | double getAsDouble() | 返回一个double值 |
IntSupplier | int getAsInt() | 返回一个int值 |
LongSupplier | long getAsLong() | 返回一个long值 |
4、判断型接口
这里接口的抽象方法特点:有参,但是返回值类型是boolean结果。
接口名 | 抽象方法 | 描述 |
---|---|---|
Predicate | boolean test(T t) | 接收一个对象 |
BiPredicate<T,U> | boolean test(T t, U u) | 接收两个对象 |
DoublePredicate | boolean test(double value) | 接收一个double值 |
IntPredicate | boolean test(int value) | 接收一个int值 |
LongPredicate | boolean test(long value) | 接收一个long值 |
5、功能型接口
这类接口的抽象方法特点:既有参数又有返回值
接口名 | 抽象方法 | 描述 |
---|---|---|
Function<T,R> | R apply(T t) | 接收一个T类型对象,返回一个R类型对象结果 |
UnaryOperator | T apply(T t) | 接收一个T类型对象,返回一个T类型对象结果 |
DoubleFunction | R apply(double value) | 接收一个double值,返回一个R类型对象 |
IntFunction | R apply(int value) | 接收一个int值,返回一个R类型对象 |
LongFunction | R apply(long value) | 接收一个long值,返回一个R类型对象 |
ToDoubleFunction | double applyAsDouble(T value) | 接收一个T类型对象,返回一个double |
ToIntFunction | int applyAsInt(T value) | 接收一个T类型对象,返回一个int |
ToLongFunction | long applyAsLong(T value) | 接收一个T类型对象,返回一个long |
DoubleToIntFunction | int applyAsInt(double value) | 接收一个double值,返回一个int结果 |
DoubleToLongFunction | long applyAsLong(double value) | 接收一个double值,返回一个long结果 |
IntToDoubleFunction | double applyAsDouble(int value) | 接收一个int值,返回一个double结果 |
IntToLongFunction | long applyAsLong(int value) | 接收一个int值,返回一个long结果 |
LongToDoubleFunction | double applyAsDouble(long value) | 接收一个long值,返回一个double结果 |
LongToIntFunction | int applyAsInt(long value) | 接收一个long值,返回一个int结果 |
DoubleUnaryOperator | double applyAsDouble(double operand) | 接收一个double值,返回一个double |
IntUnaryOperator | int applyAsInt(int operand) | 接收一个int值,返回一个int结果 |
LongUnaryOperator | long applyAsLong(long operand) | 接收一个long值,返回一个long结果 |
BiFunction<T,U,R> | R apply(T t, U u) | 接收一个T类型和一个U类型对象,返回一个R类型对象结果 |
BinaryOperator | T apply(T t, T u) | 接收两个T类型对象,返回一个T类型对象结果 |
ToDoubleBiFunction<T,U> | double applyAsDouble(T t, U u) | 接收一个T类型和一个U类型对象,返回一个double |
ToIntBiFunction<T,U> | int applyAsInt(T t, U u) | 接收一个T类型和一个U类型对象,返回一个int |
ToLongBiFunction<T,U> | long applyAsLong(T t, U u) | 接收一个T类型和一个U类型对象,返回一个long |
DoubleBinaryOperator | double applyAsDouble(double left, double right) | 接收两个double值,返回一个double结果 |
IntBinaryOperator | int applyAsInt(int left, int right) | 接收两个int值,返回一个int结果 |
LongBinaryOperator | long applyAsLong(long left, long right) | 接收两个long值,返回一个long结果 |
1.3 Lambda表达式语法
Lambda表达式是用来给【函数式接口】的变量或形参赋值用的。
其实本质上,Lambda表达式是用于实现【函数式接口】的“抽象方法”
Lambda表达式语法格式
(形参列表) -> Lambda体
说明:
- (形参列表)它就是你要赋值的函数式接口的抽象方法的(形参列表),照抄
- Lambda体就是实现这个抽象方法的方法体
- ->称为Lambda操作符(减号和大于号中间不能有空格,而且必须是英文状态下半角输入方式)
优化:Lambda表达式可以精简
- 当Lambda体中只有一句语句时,可以省略和;
- 当Lambda体中只有一句语句时,并且这个语句还是一个return语句,那么return也可以省略,但是如果;没有省略的话,return是不能省略的
- (形参列表)的类型可以省略
- 当(形参列表)的形参个数只有一个,那么可以把数据类型和()一起省略,但是形参名不能省略
- 当(形参列表)是空参时,()不能省略
示例代码:
public class TestLambdaGrammer
@Test
public void test1()
//用Lambda表达式给Runnable接口的形参或变量赋值
/*
* 确定两件事,才能写好lambda表达式
* (1)这个接口的抽象方法长什么样:
* public void run()
* (2)这个抽象方法的实现要干什么事
* 例如:我要打印“hello lambda"
*/
Runnable r = () -> System.out.println("hello lambda");;
@Test
public void test2()
//lambda体省略了;
Runnable r = () -> System.out.println("hello lambda");
@Test
public void test3()
String[] arr = "hello","Hello","java","chai";
//为arr数组排序,但是,想要不区分大小写
/*
* public static <T> void sort(T[] a,Comparator<? super T> c)
* 这里要用Lambda表达式为Comparator类型的形参赋值
*
* 两件事:
* (1)这个接口的抽象方法: int compare(T o1, T o2)
* (2)这个抽象方法要做什么事?
* 例如:这里要对String类型的元素,不区分大小写的比较大小
*/
// Arrays.sort(arr, (String o1, String o2) -> return o1.compareToIgnoreCase(o2););
//省略了return ;
// Arrays.sort(arr, (String o1, String o2) -> o1.compareToIgnoreCase(o2));
//省略了两个String
Arrays.sort(arr, (o1, o2) -> o1.compareToIgnoreCase(o2));
for (String string : arr)
System.out.println(string);
@Test
public void test4()
ArrayList<String> list = new ArrayList<>();
list.add("hello");
list.add("java");
list.add("world");
/*
* JDK1.8给Collection系列的集合,准确的讲是在Iterable接口中,增加了一个默认方法
* default void forEach(Consumer<? super T> action)
* 这个方法是用来遍历集合等的。代替原来的foreach循环的。
*
* 这个方法的形参是Consumer接口类型,它是函数式接口中消费型接口的代表
* 我现在调用这个方法,想要用Lambda表达式为Consumer接口类型形参赋值
*
* 两件事:
* (1)它的抽象方法: void accept(T t)
* (2)抽象方法的实现要完成的事是什么
* 例如:这里要打印这个t
*/
// list.forEach((String t) -> System.out.println(t););
//省略;
// list.forEach((String t) -> System.out.println(t));
//省略String
// list.forEach((t) -> System.out.println(t));
//可以省略形参()
list.forEach(t -> System.out.println(t));
1.4 Lambda表达式练习
练习1:无参无返回值形式
假如有自定义函数式接口Call如下:
public interface Call
void shout();
在测试类中声明一个如下方法:
public static void callSomething(Call call)
call.shout();
在测试类的main方法中调用callSomething方法,并用Lambda表达式为形参call赋值,可以喊出任意你想说的话。
public class TestLambda
public static void main(String[] args)
callSomething(()->System.out.println("回家吃饭"));
callSomething(()->System.out.println("我爱你"));
callSomething(()->System.out.println("滚蛋"));
callSomething(()->System.out.println("回来"));
public static void callSomething(Call call)
call.shout();
interface Call
void shout();
练习2:消费型接口
代码示例:Consumer接口
在JDK1.8中Collection集合接口的父接口Iterable接口中增加了一个默认方法:
public default void forEach(Consumer<? super T> action)
遍历Collection集合的每个元素,执行“xxx消费型”操作。
在JDK1.8中Map集合接口中增加了一个默认方法:
public default void forEach(BiConsumer<? super K,? super V> action)
遍历Map集合的每对映射关系,执行“xxx消费型”操作。
案例:
(1)创建一个Collection系列的集合,添加你知道的编程语言,调用forEach方法遍历查看
(2)创建一个Map系列的集合,添加一些(key,value)键值对,例如,添加编程语言排名和语言名称,调用forEach方法遍历查看
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oAAui5vd-1637489119063)(imgs/1564370820279.png)]
示例代码:
@Test
public void test1()
List<String> list = Arrays.asList("java","c","python","c++","VB","C#");
list.forEach(s -> System.out.println(s));
@Test
public void test2()
HashMap<Integer,String> map = new HashMap<>();
map.put(1, "java");
map.put(2, "c");
map.put(3, "python");
map.put(4, "c++");
map.put(5, "VB");
map.put(6, "C#");
map.forEach((k,v) -> System.out.println(k+"->"+v));
练习3:供给型接口
代码示例:Supplier接口
在JDK1.8中增加了StreamAPI,java.util.stream.Stream是一个数据流。这个类型有一个静态方法:
public static <T> Stream<T> generate(Supplier<T> s)
可以创建Stream的对象。而又包含一个forEach方法可以遍历流中的元素:public void forEach(Consumer<? super T> action)
。
案例:
现在请调用Stream的generate方法,来产生一个流对象,并调用Math.random()方法来产生数据,为Supplier函数式接口的形参赋值。最后调用forEach方法遍历流中的数据查看结果。
@Test
public void test2()
Stream.generate(() -> Math.random()).forEach(num -> System.out.println(num));
练习4:功能型接口
代码示例:Funtion<T,R>接口
在JDK1.8时Map接口增加了很多方法,例如:
public default void replaceAll(BiFunction<? super K,? super V,? extends V> function)
按照function指定的操作替换map中的value。
public default void forEach(BiConsumer<? super K,? super V> action)
遍历Map集合的每对映射关系,执行“xxx消费型”操作。
案例:
(1)声明一个Employee员工类型,包含编号、姓名、薪资。
(2)添加n个员工对象到一个HashMap<Integer,Employee>集合中,其中员工编号为key,员工对象为value。
(3)调用Map的forEach遍历集合
(4)调用Map的replaceAll方法,将其中薪资低于10000元的,薪资设置为10000。
(5)再次调用Map的forEach遍历集合查看结果
Employee类:
class Employee
private int id;
private String name;
private double salary;
public Employee(int id, String name, double salary)
super();
this.id = id;
this.name = name;
this.salary = salary;
public Employee()
super();
public int getId()
return id;
public void setId(int id)
this.id = id;
public String getName()
return name;
public void setName(String name)
this.name = name;
public double getSalary()
return salary;
public void setSalary(double salary)
this.salary = salary;
@Override
public String toString()
return "Employee [id=" + id + ", name=" + name + ", salary=" + salary + "]";
测试类:
import java.util.HashMap;
public class TestLambda
public static void main(String[] args)
HashMap<Integer,Employee> map = new HashMap<>();
Employee e1 = new Employee(1, "张三", 8000);
Employee e2 = new Employee(2, "李四", 9000);
Employee e3 = new Employee(3, "王五", 10000);
Employee e4 = new Employee(4, "赵六", 11000);
Employee e5 = new Employee(5, "钱七", 12000);
map.put(e1.getId(), e1);
map.put(e2.getId(), e2);
map.put(e3.getId(), e3);
map.put(e4.getId(), e4);
map.put(e5.getId(), e5);
map.forEach((k,v) -> System.out.println(k+"="+v)以上是关于Java全栈JavaSE:28.JDK1.8新特性的主要内容,如果未能解决你的问题,请参考以下文章