BP(Back Propagation)神经网络——应用篇

Posted AXYZdong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BP(Back Propagation)神经网络——应用篇相关的知识,希望对你有一定的参考价值。

Author:AXYZdong 自动化专业 工科男
有一点思考,有一点想法,有一点理性!
定个小小目标,努力成为习惯!在最美的年华遇见更好的自己!
CSDN@AXYZdong,CSDN首发,AXYZdong原创
唯一博客更新的地址为: 👉 AXYZdong的博客 👈
B站主页为:AXYZdong的个人主页

关于BP神经网络的原理可以参考我的上一篇文章:BP(Back Propagation)神经网络——原理篇

1. 9行代码的BP神经网络

代码来源于github:https://github.com/miloharper/simple-neural-network


下载解压后得到如下文件:

short_version.py

from numpy import exp, array, random, dot 
#从numpy库中调用exp(指数函数)、array(数组〉、random(随机函数)、dot(矩阵相乘函数)。
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
#bp神经网络训练部分的输入。
training_set_outputs = array([[0, 1, 1, 0]]).T
#bp神经网络训练部分的输出,.T表示矩阵转置。
random.seed(1)
#使用随机函数生成随机数,使用seed函数能够确保每次生成的随机数一致。
synaptic_weights = 2 * random.random((3, 1)) - 1
#生成一个随机数组,数组格式为3行1列,用来存储初始权重。
for iteration in range(10000):
    output = 1 / (1 + exp(-(dot(training_set_inputs, synaptic_weights))))
    #使用for语句循环10000次,将训练集的输入和权重采用dot进行矩阵相乘,将相乘得到的结果输入到sigmoid函数,然后将得到的结果赋值给output。
    synaptic_weights += dot(training_set_inputs.T, (training_set_outputs - output) * output * (1 - output))
    #权重的i调整采用“误差加权导数""公式。
print (1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights)))))
#synaptic_weights是调整之后的最终权重,数组(矩阵〉[1,0,0]与这个权重矩阵通过dot函数进行相乘,将相乘的结果作为输入引入到sigmoid函数,得到最终的结果。

运行结果:

2. main.py

源代码(适用python2环境)

from numpy import exp, array, random, dot


class NeuralNetwork():
    def __init__(self):
        # Seed the random number generator, so it generates the same numbers
        # every time the program runs.
        random.seed(1)

        # We model a single neuron, with 3 input connections and 1 output connection.
        # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
        # and mean 0.
        self.synaptic_weights = 2 * random.random((3, 1)) - 1

    # The Sigmoid function, which describes an S shaped curve.
    # We pass the weighted sum of the inputs through this function to
    # normalise them between 0 and 1.
    def __sigmoid(self, x):
        return 1 / (1 + exp(-x))

    # The derivative of the Sigmoid function.
    # This is the gradient of the Sigmoid curve.
    # It indicates how confident we are about the existing weight.
    def __sigmoid_derivative(self, x):
        return x * (1 - x)

    # We train the neural network through a process of trial and error.
    # Adjusting the synaptic weights each time.
    def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
        for iteration in xrange(number_of_training_iterations):
            # Pass the training set through our neural network (a single neuron).
            output = self.think(training_set_inputs)

            # Calculate the error (The difference between the desired output
            # and the predicted output).
            error = training_set_outputs - output

            # Multiply the error by the input and again by the gradient of the Sigmoid curve.
            # This means less confident weights are adjusted more.
            # This means inputs, which are zero, do not cause changes to the weights.
            adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))

            # Adjust the weights.
            self.synaptic_weights += adjustment

    # The neural network thinks.
    def think(self, inputs):
        # Pass inputs through our neural network (our single neuron).
        return self.__sigmoid(dot(inputs, self.synaptic_weights))


if __name__ == "__main__":

    #Intialise a single neuron neural network.
    neural_network = NeuralNetwork()

    print "Random starting synaptic weights: "
    print neural_network.synaptic_weights

    # The training set. We have 4 examples, each consisting of 3 input values
    # and 1 output value.
    training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
    training_set_outputs = array([[0, 1, 1, 0]]).T

    # Train the neural network using a training set.
    # Do it 10,000 times and make small adjustments each time.
    neural_network.train(training_set_inputs, training_set_outputs, 10000)

    print "New synaptic weights after training: "
    print neural_network.synaptic_weights

    # Test the neural network with a new situation.
    print "Considering new situation [1, 0, 0] -> ?: "
    print neural_network.think(array([1, 0, 0]))

稍加修改(适用python3环境)

from numpy import exp, array, random, dot


class NeuralNetwork():
    def __init__(self):
        # Seed the random number generator, so it generates the same numbers
        # every time the program runs.
        random.seed(1)

        # We model a single neuron, with 3 input connections and 1 output connection.
        # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
        # and mean 0.
        self.synaptic_weights = 2 * random.random((3, 1)) - 1

    # The Sigmoid function, which describes an S shaped curve.
    # We pass the weighted sum of the inputs through this function to
    # normalise them between 0 and 1.
    def __sigmoid(self, x):
        return 1 / (1 + exp(-x))

    # The derivative of the Sigmoid function.
    # This is the gradient of the Sigmoid curve.
    # It indicates how confident we are about the existing weight.
    def __sigmoid_derivative(self, x):
        return x * (1 - x)

    # We train the neural network through a process of trial and error.
    # Adjusting the synaptic weights each time.
    def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
        for iteration in range(number_of_training_iterations):
            # Pass the training set through our neural network (a single neuron).
            output = self.think(training_set_inputs)

            # Calculate the error (The difference between the desired output
            # and the predicted output).
            error = training_set_outputs - output

            # Multiply the error by the input and again by the gradient of the Sigmoid curve.
            # This means less confident weights are adjusted more.
            # This means inputs, which are zero, do not cause changes to the weights.
            adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))

            # Adjust the weights.
            self.synaptic_weights += adjustment

    # The neural network thinks.
    def think(self, inputs):
        # Pass inputs through our neural network (our single neuron).
        return self.__sigmoid(dot(inputs, self.synaptic_weights))


if __name__ == "__main__":

    #Intialise a single neuron neural network.
    neural_network = NeuralNetwork()

    print ("Random starting synaptic weights: ")
    print (neural_network.synaptic_weights)

    # The training set. We have 4 examples, each consisting of 3 input values
    # and 1 output value.
    training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
    training_set_outputs = array([[0, 1, 1, 0]]).T

    # Train the neural network using a training set.
    # Do it 10,000 times and make small adjustments each time.
    neural_network.train(training_set_inputs, training_set_outputs, 10000)

    print ("New synaptic weights after training: ")
    print (neural_network.synaptic_weights)

    # Test the neural network with a new situation.
    print ("Considering new situation [1, 0, 0] -> ?: ")
    print (neural_network.think(array([1, 0, 0])))

运行结果:

待续…

3. 总结

  • 9行代码实现BP神经网络是一种单神经网络(simple-neural-network),简洁的代码反映了BP神经网络的基本原理;
  • 对比两种实现方式,9行代码很简洁,却只适合特殊的情形下。而在 main,py 中更多的是将各个函数封装模块化,便于移植。且清晰的注释增强了代码的可读性。

参考文献

[1] BP(Back Propagation)神经网络——原理篇
[2] https://github.com/miloharper/simple-neural-network

  本次的分享就到这里


如果我的博客对你有帮助、如果你喜欢我的博客内容,请 “点赞” “收藏” “关注” 一键三连哦!
更多精彩内容请前往 AXYZdong的博客


如果以上内容有任何错误或者不准确的地方,欢迎在下面 👇 留个言。或者你有更好的想法,欢迎一起交流学习~~~

以上是关于BP(Back Propagation)神经网络——应用篇的主要内容,如果未能解决你的问题,请参考以下文章

BP(Back Propagation)神经网络——应用篇

BP(Back Propagation)神经网络——应用篇

手把手推导Back Propagation

BP(Back Propagation)算法

BP(back propagation)反向传播

BP神经网络