一文了解赫夫曼树的构建与赫夫曼编码
Posted 温文艾尔
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文了解赫夫曼树的构建与赫夫曼编码相关的知识,希望对你有一定的参考价值。
文章目录
一、赫夫曼树
基本介绍
- 给定n个权值作为n个叶子结点,构造一颗二叉树。若该树的带权路径长度(wpl)达到最小,这样的二叉树为最优二叉树,也称为哈夫曼树(HuffmanTree)还有的书翻译为霍夫曼树
- 赫夫曼树是带权路径长度最短的树,权值较大的节点离根较近
赫夫曼树几个重要概念和举例说明
-
路径和路径长度:在一棵树中,从一个节点往下可以达到的孩子或孙子节点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根节点的层数为1,则从根节点到第L层节点的路径长度为L-1
-
节点的权及带权路径长度:若将树中节点赋给一个有着某种含义的数值,则这个数值称为该节点的权,节点的带权路径长度为:从根节点到该节点之间的路径长度与该节点的权的乘积
-
例如下图,从根节点到13这个节点的路径长度为3-1=2,13这个节点的带权路径长度为2*13=26
-
树的带权路径长度:树的带权路径长度规定所有叶子结点的带权路径长度之和,记为WPL(weighted path length)权值越大的节点离根节点越近的二叉树才是最优二叉树
-
WPL最小的就是赫夫曼树
赫夫曼树创建步骤图解
假如有下面一组数据{13,7,8,3,29,6,1},我们来构建赫夫曼树
- 从小到大进行排序,每个数据都是一个节点,每个节点可以看成是一颗最简单的二叉树
- 排序{1,3,6,7,8,13,29}
- 取出根节点权值最小的两个二叉树,组成一颗新的二叉树,该树的二叉树的根节点的权值是前面两棵二叉树根节点权值的和,比如1,3组成二叉树,二叉树节点权值为1+3=4
- 再将这颗新的二叉树,以根节点的权值大小再次排序,不断重复1-2-3-4的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
代码构建赫夫曼树
package org.wql.huffmantree;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**哈夫曼树
* Description
* User:
* Date:
* Time:
*/
public class HuffmanTree {
public static void main(String[] args) {
int arr[] = {13,7,8,3,29,6,1};
Node root = huffman(arr);
preOrder(root);
}
//创建赫夫曼树的方法
public static Node huffman(int[] arr){
//遍历arr数组
//1.遍历arr数组
//2.将arr的每个元素构成一个Node
//3.将Node放入到ArrayList中
List<Node> nodes = new ArrayList<Node>();
for (int value : arr) {
nodes.add(new Node(value));
}
while (nodes.size()>1){
//从小到大排序
Collections.sort(nodes);
//取出根节点权值最小的两颗二叉树
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
Node parent = new Node(leftNode.value+rightNode.value);
parent.left=leftNode;
parent.right=rightNode;
//将原先的两个最小的节点移出集合
nodes.remove(leftNode);
nodes.remove(rightNode);
//将新节点添加入集合
nodes.add(parent);
}
//将赫夫曼树的头节点返回
return nodes.get(0);
}
public static void preOrder(Node root){
if(root==null){
System.out.println("树空,无法遍历");
}else {
root.preOrder();
}
}
}
//为了让Node对象支持排序
//让Node 实现Comparable<Node>
class Node implements Comparable<Node>{
int value;
Node left;
Node right;
public Node(int value){
this.value=value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
@Override
public int compareTo(Node o) {
//表示从小到大排
return this.value-o.value;
}
//前序遍历哈夫曼树
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
}
二、赫夫曼编码
1基本介绍
- 赫夫曼编码也翻译为哈夫曼编码(Huffman Coding)又称霍夫曼编码,是一种编码方式,属于一种程序算法
- 赫夫曼编码是赫夫曼树在电讯通信中的经典的应用之一
- 赫夫曼编码广泛的用于数据文件压缩,其压缩率通常在20%~90%之间
- 赫夫曼码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,称之为最佳编码
通信领域中的信息的处理方式1-定长编码
如果按照二进制来传递信息,其中长度为359,其中包括空格,可以看到长度非常的长
通信领域中的信息的处理方式2-变长编码
我们通过统计每个字符出现的次数,作为发送依据完成信息传递,长度大大缩减,但是信息读取的精准度却大大下降
通信领域中信息的处理方式3-赫夫曼编码
赫夫曼编码的原理剖析
如果我们要传递这样的字符串:“i like like like java do you like a java”
-
首先统计各个字符出现的个数
-
d:1
y:1
u:1
j:2
v:2
o:2
l:4
k:4
3:4
i:5
a:5
:9
-
-
按照上面字符出现的个数构建一颗赫夫曼树,将次数作为权值
-
根据赫夫曼树,给每个字符规定编码(前缀编码),向左的路径为0,向右的路径为1
- o:1000
- u:10010
- d:100110
- y:100111
- i:101
- a:110
- k:1110
- e:1111
- j:0000
- v:0001
- l:001
- 空格:01
按照上方的赫夫曼编码,我们得到字符串对应的编码
可以看到在提高精准度的同时,数据长度也大大减少
注意:
赫夫曼树根据排序方法不同,也可能不太一样,这样对应的赫夫曼编码也不完全一样,但是wpl是一样的,都是最小的
将字符串通过赫夫曼进行压缩
package org.wql.huffmancode;
import java.util.*;
/**
* Description
* User:
* Date:
* Time:
*/
public class HuffmanCode {
static StringBuilder stringBuilder = new StringBuilder();
static Map<Byte,String> huffmanCodes = new HashMap<>();
public static void main(String[] args) {
String content = "i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println("未压缩之前的长度:"+contentBytes.length);
byte[] bytes = huffmanZip(contentBytes);
System.out.println("压缩后的结果是:"+Arrays.toString(bytes));
System.out.println("压缩率为:"+(double)(contentBytes.length-bytes.length)/contentBytes.length);
}
public static byte[] huffmanZip(byte[] contentBytes){
List<Node> nodes = getNodes(contentBytes);
System.out.println(nodes);
//生成赫夫曼树
Node root = huffman(nodes);
preOrder(root);
//利用生成的赫夫曼树,完成赫夫曼码表
Map<Byte, String> codes = root.getCodes(stringBuilder, huffmanCodes);
codes.forEach((v,i)->{
System.out.println(v+":"+i);
});
//通过生成的赫夫曼编码表,测试是否生成了对应的赫夫曼编码
byte[] zip = zip(contentBytes, codes);
return zip;
}
//构建赫夫曼树
private static Node huffman(List<Node> nodes) {
while (nodes.size()>1){
Collections.sort(nodes);
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left=leftNode;
parent.right=rightNode;
nodes.remove(leftNode);
nodes.remove(rightNode);
nodes.add(parent);
}
return nodes.get(0);
}
public static List<Node> getNodes(byte[] bytes){
ArrayList<Node> nodes = new ArrayList<>();
Map<Byte,Integer> map = new HashMap<>();
for (byte b : bytes) {
//count是否为零代表是否已经出现过该字符
Integer count = map.get(b);
if(count!=null){
map.put(b,count+1);
}else{
map.put(b,1);
}
}
map.forEach((v,i)->{
nodes.add(new Node(v,i));
});
return nodes;
}
//前序遍历
public static void preOrder(Node root){
if(root==null){
System.out.println("树空,无法遍历");
}else {
root.preOrder();
}
}
/**
*
* @param bytes 原始字符串对应的byte
* @param huffmanCodes huffmanCodes 生成的赫夫曼编码
* @return 返回赫夫曼编码处理后的byte[]
* 例如返回字符串100101010101010101010001111
*
*huffmanCodeBytes[0]=10010101(补码)
*10010101因为是补码,所以我们现将其转为反码再减1
* 10010101-1 = 10010100
*/
private static byte[] zip(byte[] bytes,Map<Byte,String> huffmanCodes){
StringBuilder sb = new StringBuilder();
for (byte b : bytes) {
sb.append(huffmanCodes.get(b));
}
System.out.println(sb.length());
//将字符串转成byte数组
//统计返回byte[] huffmanCodeBytes的长度
int len = (sb.length()+7)/8;
byte[] huffmanCodeBytes = new byte[len];
int index = 0;
for (int i=0;i<sb.length();i+=8){
//每8位对应一个byte,所以步长+8
String strByte;
if(i+8>sb.length()){
strByte = sb.substring(i);
}else {
strByte = sb.substring(i,i+8);
}
//将strByte转成byte,放进huffmanCodeBytes
huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte,2);
index++;
}
return huffmanCodeBytes;
}
}
class Node implements Comparable<Node> {
Byte data;
int weight;
Node left;
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public String toString() {
return "Node{" +
"data=" + data +
", weight=" + weight +
'}';
}
@Override
public int compareTo(Node o) {
//从小到大排序
return this.weight-o.weight;
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left!=null){
this.left.preOrder();
}
if(this.right!=null){
this.right.preOrder();
}
}
public Map<Byte,String> getCodes(StringBuilder stringBuilder,Map<Byte,String> huffmanCodes){
StringBuilder builder = new StringBuilder(stringBuilder);
if(this.data!=null){
huffmanCodes.put(this.data,builder.toString());
builder=new StringBuilder("");
return huffmanCodes;
}
if(this.left!=null){
builder.append("0");
this.left.getCodes(builder,huffmanCodes);
}
if(this.right!=null){
builder.append("1");
this.right.getCodes(builder,huffmanCodes);
}
return huffmanCodes;
}
}
以上是关于一文了解赫夫曼树的构建与赫夫曼编码的主要内容,如果未能解决你的问题,请参考以下文章