ARM裸机开发:输入中断
Posted JeckXu666
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ARM裸机开发:输入中断相关的知识,希望对你有一定的参考价值。
文章目录
ARM裸机开发:输入中断
一、硬件平台:
正点原子I.MX6U阿尔法开发板
二、原理图分析
输入中断是配置GPIO作为输入IO口,检测按键引脚电平,当目标电平来到时产生中断,进入中断服务函数处理程序,I.MX6U的按键引脚如下:
可以看到按键引脚接到 GPIO1_IO18 口,按键的原理就是默认接一个上拉电阻,按键按下接地,可以有效控制 IO 电平
三、程序编写
程序编写前先复制上一节按键输入的工程作为本小节的开始工程
3.1 移植相关文件
在 NXP 提供的 SDK 包内 core_ca7.h
有相关的定义文件,为了节省开发时间,我们将其移植到本地工程目录;注意该文件要做一些修改,删除一些不必要的内容,不然会保存,这里我直接复制正点原子修改后的文件到工程目录下:
该文件下面我们只需要注意 10 个API函数,函数如下:
函数 | 描述 |
---|---|
GIC_Init | 初始化 GIC |
GIC_EnableIRQ | 使能指定的外设中断 |
GIC_DisableIRQ | 关闭指定的外设中断 |
GIC_AcknowledgeIRQ | 返回中断号 |
GIC_DeactivateIRQ | 无效化指定中断 |
GIC_GetRunningPriority | 获取当前正在运行的中断优先级 |
GIC_SetPriorityGrouping | 设置抢占优先级位数 |
GIC_GetPriorityGrouping | 获取抢占优先级位数 |
GIC_SetPriority | 设置指定中断的优先级 |
GIC_GetPriority | 获取指定中断的优先级 |
文件添加后使用如下头文件调用
#include "core_ca7.h"
3.2 编写启动文件
SDK 添加完成之后就是修改启动文件,定义系统中断服务函数,修改 IRQ 中断,判断中断类型,进入不同的中断服务函数,启动文件编写如下:
首先编写全局标号,进入 _start 函数,在里面创建中断向量表
.global _start /* 全局标号 */
/*
* 描述: _start函数,首先是中断向量表的创建
* 参考文档:ARM Cortex-A(armV7)编程手册V4.0.pdf P42,3 ARM Processor Modes and Registers(ARM处理器模型和寄存器)
* ARM Cortex-A(armV7)编程手册V4.0.pdf P165 11.1.1 Exception priorities(异常)
*/
_start:
ldr pc, =Reset_Handler /* 复位中断 */
ldr pc, =Undefined_Handler /* 未定义中断 */
ldr pc, =SVC_Handler /* SVC(Supervisor)中断 */
ldr pc, =PrefAbort_Handler /* 预取终止中断 */
ldr pc, =DataAbort_Handler /* 数据终止中断 */
ldr pc, =NotUsed_Handler /* 未使用中断 */
ldr pc, =IRQ_Handler /* IRQ中断 */
ldr pc, =FIQ_Handler /* FIQ(快速中断)未定义中断 */
编写对应的中断服务函数,这里除了 Reset_Handler 和 IRQ_Handler 我们需要关注一下,其他的都暂时先编写为死循环:
/* 未定义中断 */
Undefined_Handler:
ldr r0, =Undefined_Handler
bx r0
/* SVC中断 */
SVC_Handler:
ldr r0, =SVC_Handler
bx r0
/* 预取终止中断 */
PrefAbort_Handler:
ldr r0, =PrefAbort_Handler
bx r0
/* 数据终止中断 */
DataAbort_Handler:
ldr r0, =DataAbort_Handler
bx r0
/* 未使用的中断 */
NotUsed_Handler:
ldr r0, =NotUsed_Handler
bx r0
/* FIQ中断 */
FIQ_Handler:
ldr r0, =FIQ_Handler
bx r0
这些中断服务函数是可以编写一些处理代码,方便用户判断错误的来源的,暂时先不研究
下面编写复位中断服务函数:
/* 复位中断 */
Reset_Handler:
/* 关闭全局中断 */
cpsid i
/* 关闭I、DCache和MMU 采取读-改-写的方式*/
/* 读取CP15的C1寄存器到R0中*/
mrc p15, 0, r0, c1, c0, 0
/* 清除C1寄存器的bit12位(I位),关闭I Cache*/
bic r0, r0, #(0x1 << 12)
/* 清除C1寄存器的bit2(C位),关闭D Cache*/
bic r0, r0, #(0x1 << 2)
/* 清除C1寄存器的bit1(A位),关闭对齐*/
bic r0, r0, #0x2
/* 清除C1寄存器的bit11(Z位),关闭分支预测*/
bic r0, r0, #(0x1 << 11)
/* 清除C1寄存器的bit0(M位),关闭MMU*/
bic r0, r0, #0x1
/* 将r0寄存器中的值写入到CP15的C1寄存器中*/
mcr p15, 0, r0, c1, c0, 0
#if 0
/* 汇编版本设置中断向量表偏移 */
ldr r0, =0X87800000
dsb
isb
mcr p15, 0, r0, c12, c0, 0
dsb
isb
#endif
/* 设置各个模式下的栈指针,
* 注意:IMX6UL的堆栈是向下增长的!
* 堆栈指针地址一定要是4字节地址对齐的!!!
* DDR范围:0X80000000~0X9FFFFFFF
*/
/* 进入IRQ模式 */
mrs r0, cpsr
bic r0, r0, #0x1f /* 将r0寄存器中的低5位清零,也就是cpsr的M0~M4 */
orr r0, r0, #0x12 /* r0或上0x13,表示使用IRQ模式 */
msr cpsr, r0 /* 将r0 的数据写入到cpsr_c中 */
ldr sp, =0x80600000 /* 设置IRQ模式下的栈首地址为0X80600000,大小为2MB */
/* 进入SYS模式 */
mrs r0, cpsr
bic r0, r0, #0x1f /* 将r0寄存器中的低5位清零,也就是cpsr的M0~M4 */
orr r0, r0, #0x1f /* r0或上0x13,表示使用SYS模式 */
msr cpsr, r0 /* 将r0 的数据写入到cpsr_c中 */
ldr sp, =0x80400000 /* 设置SYS模式下的栈首地址为0X80400000,大小为2MB */
/* 进入SVC模式 */
mrs r0, cpsr
bic r0, r0, #0x1f /* 将r0寄存器中的低5位清零,也就是cpsr的M0~M4 */
orr r0, r0, #0x13 /* r0或上0x13,表示使用SVC模式 */
msr cpsr, r0 /* 将r0 的数据写入到cpsr_c中 */
ldr sp, =0X80200000 /* 设置SVC模式下的栈首地址为0X80200000,大小为2MB */
cpsie i /* 打开全局中断 */
#if 0
/* 使能IRQ中断 */
mrs r0, cpsr /* 读取cpsr寄存器值到r0中 */
bic r0, r0, #0x80 /* 将r0寄存器中bit7清零,也就是CPSR中的I位清零,表示允许IRQ中断 */
msr cpsr, r0 /* 将r0重新写入到cpsr中 */
#endif
b main /* 跳转到main函数 */
IRQ 中断服务函数,进入中断服务函数后,先进行现场保护,然后获取 GIC 的基地址,偏移后操作其寄存器,获取当前中断号,保存到寄存器 r0 和 r1,接着调用一个c语言中断处理函数,将参数从 r0-r3 四个寄存器传入函数
汇编调用 C 函数的时候建议形参不要超过 4 个,形参可以由 r0~r3 这四个寄存器来传递,如果形参大于 4 个,那么大于 4 个的部分要使用堆栈进行传递。
所以 r0 寄存器写入中断号就可以了传入到函数 system_irqhandler;接着该函数进行对应中断的调用和处理,处理完成后向 GICC_EOIR 寄存器写入其中断号表示中断处理完成;
/* IRQ中断!重点!!!!! */
IRQ_Handler:
# 现场保护
push {lr} /* 保存lr地址 */
push {r0-r3, r12} /* 保存r0-r3,r12寄存器 */
mrs r0, spsr /* 读取spsr寄存器 */
push {r0} /* 保存spsr寄存器 */
mrc p15, 4, r1, c15, c0, 0 /* 从CP15的C0寄存器内的值到R1寄存器中*/
add r1, r1, #0X2000 /* GIC基地址加0X2000,也就是GIC的CPU接口端基地址 */
ldr r0, [r1, #0XC] /* GIC的CPU接口端基地址加0X0C就是GICC_IAR寄存器,*/
/* GICC_IAR寄存器保存这当前发生中断的中断号,我们要根据*/
/* 这个中断号来绝对调用哪个中断服务函数*/
push {r0, r1} /* 保存r0,r1 */
cps #0x13 /* 进入SVC模式,允许其他中断再次进去 */
push {lr} /* 保存SVC模式的lr寄存器 */
ldr r2, =system_irqhandler /* 加载C语言中断处理函数到r2寄存器中*/
blx r2 /* 运行C语言中断处理函数,带有一个参数,保存在R0寄存器中 */
pop {lr} /* 执行完C语言中断服务函数,lr出栈 */
cps #0x12 /* 进入IRQ模式 */
pop {r0, r1}
# 向 GICC_EOIR 寄存器写入刚刚处理完成的中断号,
# 当一个中断处理完成以后必须向 GICC_EOIR 寄存器
# 写入其中断号表示中断处理完成
str r0, [r1, #0X10] /* 中断执行完成,写EOIR */
pop {r0}
msr spsr_cxsf, r0 /* 恢复spsr */
pop {r0-r3, r12} /* r0-r3,r12出栈 */
pop {lr} /* lr出栈 */
subs pc, lr, #4 /* 将lr-4赋给pc */
之后就是进行现场恢复,返回到中断位置!注意,此处恢复现场传递的是 lr - 4 的寄存器值,而不是pc,因为 ARM 的指令是三级流水线:取指、译指、执 行,pc 指向的是正在取值的地址,比如下面一段代码
0X2000 MOV R1, R0 ;执行
0X2004 MOV R2, R3 ;译指
0X2008 MOV R4, R5 ;取值 PC
当前正在执行 0X2000 地址处的指令 “MOV R1, R0” ,但 PC 里面已经保存了 0X2008 地址处的指令“MOV R4, R5”。若发生中断,中断发生的时候保存在 lr 中的是 pc 的值,即地址 0X2008。当中断处理完成如果直接跳转到 lr 里面保存的地址处(0X2008) 开始运行,那么就有一个指令没有执行,所以就需要将 lr-4 赋值给 pc,即 pc=0X2004,从第二级正在译指的指令 “MOV R2, R3” 开始执行
3.3 中断处理程序
我们在中断服务函数 IRQ_Handler 中调用了 C 函数 system_irqhandler 来处理具体的中断,该函数的具体细节需要我们自己实现,所以要编写中断处理程序来实现,同时因为中断数量较多,所以我们引入一些其他的数据结构单元辅助管理中断服务函数,编写如下:
新建一个新的模块文件
头文件插入如下代码
#ifndef __BSP_INT_H
#define __BSP_INT_H
#include "imx6ul.h"
typedef void (* system_irq_handler_t) (unsigned int giccIar,void *param);
typedef struct _sys_irq_handle
{
/* data */
system_irq_handler_t irqHandler;
void *userParam;
} sys_irq_handle_t;
void int_init(void);
void system_irqtable_init(void);
void system_register_irqhandler(IRQn_Type irq,
system_irq_handler_t handler,
void *userParam);
void system_irqhandler(unsigned int giccIar);
void default_irqhandler(unsigned int giccIar,void *userParam);
#endif
代码解释:
typedef void (* system_irq_handler_t) (unsigned int giccIar,void *param);
创建一个函数指针,用 typedef 定义修饰别名为 system_irq_handler_t
typedef struct _sys_irq_handle
{
/* data */
system_irq_handler_t irqHandler;
void *userParam;
} sys_irq_handle_t;
创建一个结构体,其有两个参数,一个是函数指针的入口指针,另外一个则是一个用户参数,创建这个结构体用于保存中断的信息,保存其中断处理函数入口因为有160个中断源,所以我们在.c文件中可以定义一个结构体数组用于存储所有中断的信息
其他的就是一些函数声明了:
// 中断系统(GIC)初始化
void int_init(void);
// 中断信息结构体数组初始化
void system_irqtable_init(void);
// 注册中断,修改目标中断的结构体的信息
//要使用某个外设中断,那就必须调用此函数来给这个中断注册一个中断处理函数
void system_register_irqhandler(IRQn_Type irq,
system_irq_handler_t handler,
void *userParam);
// _start 文件中调用的的中断号处理函数
void system_irqhandler(unsigned int giccIar);
// 默认中断处理函数
void default_irqhandler(unsigned int giccIar,void *userParam);
.c 模块文件代码如下,具体功能注释写在代码中:
#include "bsp_int.h"
/* 中断嵌套计数器,计算中断嵌套信息 */
static unsigned int irqNesting;
/* 中断服务函数表, 用于存放中断的信息*/
static sys_irq_handle_t irqTable[NUMBER_OF_INT_VECTORS];
/*
* @description : 中断初始化函数
* @param : 无
* @return : 无
*/
void int_init(void)
{
GIC_Init(); /* 初始化GIC*/
system_irqtable_init(); /* 初始化中断表*/
__set_VBAR((uint32_t)0x87800000); /* 中断向量表偏移,偏移到起始地址*/
}
/*
* @description : 初始化中断服务函数表
* @param : 无
* @return : 无
*/
void system_irqtable_init(void)
{
unsigned int i = 0;
irqNesting = 0;
/* 先将所有的中断服务函数设置为默认值 */
for(i = 0; i < NUMBER_OF_INT_VECTORS; i++)
{
//给每个中断的数组改变传入参数和数值
system_register_irqhandler((IRQn_Type)i,default_irqhandler, NULL);
}
}
/*
* @description : 给指定的中断号注册中断服务函数
* @param - irq : 要注册的中断号
* @param - handler : 要注册的中断处理函数
* @param - usrParam : 中断服务处理函数参数
* @return : 无
*/
void system_register_irqhandler(IRQn_Type irq, system_irq_handler_t handler, void *userParam)
{
irqTable[irq].irqHandler = handler;
irqTable[irq].userParam = userParam;
}
/*
* @description : C语言中断服务函数,irq汇编中断服务函数会
调用此函数,此函数通过在中断服务列表中查
找指定中断号所对应的中断处理函数并执行。
* @param - giccIar : 中断号
* @return : 无
*/
void system_irqhandler(unsigned int giccIar)
{
uint32_t intNum = giccIar & 0x3FFUL;
/* 检查中断号是否符合要求 */
if ((intNum == 1023) || (intNum >= NUMBER_OF_INT_VECTORS))
{
return;
}
irqNesting++; /* 中断嵌套计数器加一 */
/* 根据传递进来的中断号,在irqTable中调用确定的中断服务函数 */
irqTable[intNum].irqHandler(intNum, irqTable[intNum].userParam);
irqNesting--; /* 中断执行完成,中断嵌套寄存器减一 */
}
/*
* @description : 默认中断服务函数
* @param - giccIar : 中断号
* @param - usrParam : 中断服务处理函数参数
* @return : 无
*/
void default_irqhandler(unsigned int giccIar, void *userParam)
{
while(1) ;
}
3.4 开启输入中断
这里 GPIO 配置代码直接使用正点原子的驱动方案,有关的注释我写在代码内
bsp_gpio.h
#ifndef _BSP_GPIO_H
#define _BSP_GPIO_H
#define _BSP_KEY_H
#include "imx6ul.h"
/***************************************************************
Copyright © zuozhongkai Co., Ltd. 1998-2019. All rights reserved.
文件名 : bsp_gpio.h
作者 : 左忠凯
版本 : V1.0
描述 : GPIO操作文件头文件。
其他 : 无
论坛 : www.openedv.com
日志 : 初版V1.0 2019/1/4 左忠凯创建
V2.0 2019/1/4 左忠凯修改
添加GPIO中断相关定义
***************************************************************/
/* 枚举类型和结构体定义 */
typedef enum _gpio_pin_direction
{
kGPIO_DigitalInput = 0U, /* 输入 */
kGPIO_DigitalOutput = 1U, /* 输出 */
} gpio_pin_direction_t;
/* GPIO中断触发类型枚举 */
typedef enum _gpio_interrupt_mode
{
kGPIO_NoIntmode = 0U, /* 无中断功能 */
kGPIO_IntLowLevel = 1U, /* 低电平触发 */
kGPIO_IntHighLevel = 2U, /* 高电平触发 */
kGPIO_IntRisingEdge = 3U, /* 上升沿触发 */
kGPIO_IntFallingEdge = 4U, /* 下降沿触发 */
kGPIO_IntRisingOrFallingEdge = 5U, /* 上升沿和下降沿都触发 */
} gpio_interrupt_mode_t;
/* GPIO配置结构体 */
typedef struct _gpio_pin_config
{
gpio_pin_direction_t direction; /* GPIO方向:输入还是输出 */
uint8_t outputLogic; /* 如果是输出的话,默认输出电平 */
gpio_interrupt_mode_t interruptMode; /* 中断方式 */
} gpio_pin_config_t;
/* 函数声明 */
// GPIO 初始化
void gpio_init(GPIO_Type *base, int pin, gpio_pin_config_t *config);
// GPIO 读IO电平
int gpio_pinread(GPIO_Type *base, int pin);
// GPIO 写GPIO电平
void gpio_pinwrite(GPIO_Type *base, int pin, int value);
// GPIO 中断配置
void gpio_intconfig(GPIO_Type* base, unsigned int pin,
gpio_interrupt_mode_t pinInterruptMode);
// 使能 GPIO 中断
void gpio_enableint(GPIO_Type* base, unsigned int pin);
// 失能 GPIO 中断
void gpio_disableint(GPIO_Type* base, unsigned int pin);
// 清除中断标志
void gpio_clearintflags(GPIO_Type* base, unsigned int pin);
#endif
bsp_gpio.c
#include "bsp_gpio.h"
/***************************************************************
Copyright © zuozhongkai Co., Ltd. 1998-2019. All rights reserved.
文件名 : bsp_gpio.h
作者 : 左忠凯
版本 : V1.0
描述 : GPIO操作文件。
其他 : 无
论坛 : www.openedv.com
日志 : 初版V1.0 2019/1/4 左忠凯创建
V2.0 2019/1/4 左忠凯修改:
修改gpio_init()函数,支持中断配置.
添加gpio_intconfig()函数,初始化中断
添加gpio_enableint()函数,使能中断
添加gpio_clearintflags()函数,清除中断标志位
***************************************************************/
/*
* @description : GPIO初始化。
* @param - base : 要初始化的GPIO组。
* @param - pin : 要初始化GPIO在组内的编号。
* @param - config : GPIO配置结构体。
* @return : 无
*/
void gpio_init(GPIO_Type *base, int pin, gpio_pin_config_t *config)
{
base->IMR &= ~(1U << pin);
if(config->direction == kGPIO_DigitalInput) /* GPIO作为输入 */
{
base->GDIR &= ~( 1 << pin);
}
else /* 输出 */
{
base->GDIR |= 1 << pin;
gpio_pinwrite(base,pin, config->outputLogic); /* 设置默认输出电平 */
}
gpio_intconfig(base, pin, config->interruptMode); /* 中断功能配置 */
}
/*
* @description : 读取指定GPIO的电平值 。
* @param - base : 要读取的GPIO组。
* @param - pin : 要读取的GPIO脚号。
* @return : 无
*/
int gpio_pinread(GPIO_Type *base, int pin)
{
return (((base->DR) >> pin) & 0x1);
}
/*
* @description : 指定GPIO输出高或者低电平 。
* @param - base : 要输出的的GPIO组。
* @param - pin : 要输出的GPIO脚号。
* @param - value : 要输出的电平,1 输出高电平, 0 输出低低电平
* @return : 无
*/
void gpio_pinwrite(GPIO_Type *base, int pin, int value)
{
if (value == 0U)
{
base->DR &= ~(1U << pin); /* 输出低电平 */
}
else
{
base->DR |= (1U << pin); /* 输出高电平 */
}
}
/*
* @description : 设置GPIO的中断配置功能
* @param - base : 要配置的IO所在的GPIO组。
* @param - pin : 要配置的GPIO脚号。
* @param - pinInterruptMode: 中断模式,参考枚举类型gpio_interrupt_mode_t
* @return : 无
*/
void gpio_intconfig(GPIO_Type* base, unsigned int pin,
gpio_interrupt_mode_t pin_int_mode)
{
volatile uint32_t *icr;
uint32_t icrShift;
icrShift = pin;
base->EDGE_SEL &= ~(1U << pin);
if(pin < 16) /* 低16位 */
{
icr = &(base->ICR1);
}
else /* 高16位 */
{
icr = &(base->ICR2);
icrShift -= 16;
}
switch(pin_int_mode)
{
case(kGPIO_IntLowLevel):
*icr &= ~(3U << (2 * icrShift));
break;
case(kGPIO_IntHighLevel):
*icr = (*icr & (~(3U << (2 * icrShift)))) | (1U << (2 * icrShift));
break;
case(kGPIO_IntRisingEdge):
*icr = (*icr & (~(3U << (2 * icrShift)))) | (2U << (2 * icrShift));
break;
case(kGPIO_IntFallingEdge):
*icr |= (3U << (2 * icrShift));
break;
case(kGPIO_IntRisingOrFallingEdge):
base->EDGE_SEL |= (1U << pin);
break;
default:
break;
}
}
/*
* @description : 使能GPIO的中断功能
* @param - base : 要使能的IO所在的GPIO组。
* @param - pin : 要使能的GPIO在组内的编号。
* @return : 无
*/
void gpio_enableint(GPIO_Type* base, unsigned int pin)
{
base->IMR |= (1 << pin);
}
/*
* @description : 禁止GPIO的中断功能
* @param - base : 要禁止的IO所在的GPIO组。
* @param - pin : 要禁止的GPIO在组内的编号。
* @return : 无
*/
void gpio_disableint(GPIO_Type* base, unsigned int pin)
{
base->IMR &= ~(1 << pin);
}
/*
* @description : 清除中断标志位(写1清除)
* @param - base : 要清除的IO所在的GPIO组。
* @param - pin : 要清除的GPIO掩码。
* @return : 无
*/
void gpio_clearintflags(GPIO_Type* base, unsigned int pin)
{
base->ISR |= (1 << pin);
}
3.5 按键中断编写
有了 GPIO 驱动代码后,我们就可以新建一个新的模块代码,用于配置外部触发中断,新建模块如下:
bsp_exit.h 代码:
#ifndef __BSP_EXIT_H
#define __BSP_EXIT_H
#include "imx6ul.h"
// 外部中断初始化
void exit_init(void);
// 外部中断回调函数
void gpio1_io18_irqhandler(void);
#endif
bsp_exit.c 代码如下:
#include "bsp_exit.h"
#include "bsp_gpio.h"
#include "bsp_int.h"
#include "bsp_delay.h"
#include "bsp_beep.h"
void exit_init(void)
{
//设定GPIO模式
gpio_pin_config_t key_config;
IOMUXC_SetPinMux(IOMUXC_UART1_CTS_B_GPIO1_IO18,0);
IOMUXC_SetPinConfig(IOMUXC_UART1_CTS_B_GPIO1_IO18,0xF080);
//设定按键中断
key_config.direction=kGPIO_DigitalInput;
key_config.interruptMode=kGPIO_IntFallingEdge;
key_config.outputLogic=1;
gpio_init(GPIO1,18,&key_config);
//使能GIC中断,注册按键触发中断
GIC_EnableIRQ(GPIO1_Combined_16_31_IRQn);
system_register_irqhandler(GPIO1_Combined_16_31_IRQn,
(system_irq_handler_t)gpio1_io18_irqhandler,
NULL);
//使能按键触发中断
gpio_enableint(GPIO1, 18);
}
void gpio1_io18_irqhandler(void)
{
static unsigned char state = 0;
//延时消抖(中断中严禁使用死延时,这里是为了IO稳定)
delay(10);
if(gpio_pinread(GPIO1,18) == 0)
{
state = !state;
beep_switch(state);
}
//清除中断标志
gpio_clearintflags(GPIO1,18);
}
以上代码准备完成后,我们在 main.c 中分别调用代码进行初始化
3.6 编写Makefile脚本
在 Makefile 里面添加上对应文件的文件夹就可以完成编译,添加位置如下:
编译一下,成功通过:
四、实验现象
按下按键 LED 的灯光效果切换
以上是关于ARM裸机开发:输入中断的主要内容,如果未能解决你的问题,请参考以下文章