世界人工智能大赛OCR赛题方案!
Posted Datawhale
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了世界人工智能大赛OCR赛题方案!相关的知识,希望对你有一定的参考价值。
Datawhale干货
作者:阿水,北京航空航天大学,Datawhale成员
本文以世界人工智能创新大赛(AIWIN)手写体 OCR 识别竞赛为实践背景,给出了OCR实践的常见思路和流程。本项目使用PaddlePaddle 2.0动态图实现的CRNN文字识别模型,全文代码及思路如下。后台回复 211112 可获取完整代码。
代码地址:https://aistudio.baidu.com/aistudio/projectdetail/2612313
赛题背景
银行日常业务中涉及到各类凭证的识别录入,例如身份证录入、支票录入、对账单录入等。以往的录入方式主要是以人工录入为主,效率较低,人力成本较高。近几年来,OCR相关技术以其自动执行、人为干预较少等特点正逐步替代传统的人工录入方式。但OCR技术在实际应用中也存在一些问题,在各类凭证字段的识别中,手写体由于其字体差异性大、字数不固定、语义关联性较低、凭证背景干扰等原因,导致OCR识别率准确率不高,需要大量人工校正,对日常的银行录入业务造成了一定的影响。
比赛地址:http://ailab.aiwin.org.cn/competitions/65
赛题任务
本次赛题将提供手写体图像切片数据集,数据集从真实业务场景中,经过切片脱敏得到,参赛队伍通过识别技术,获得对应的识别结果。即:
输入:手写体图像切片数据集
输出:对应的识别结果
代码说明
本项目是PaddlePaddle 2.0动态图实现的CRNN文字识别模型,可支持长短不一的图片输入。CRNN是一种端到端的识别模式,不需要通过分割图片即可完成图片中全部的文字识别。CRNN的结构主要是CNN+RNN+CTC,它们分别的作用是:
使用深度CNN,对输入图像提取特征,得到特征图;
使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
使用 CTC Loss,把从循环层获取的一系列标签分布转换成最终的标签序列。
CRNN的结构如下,一张高为32的图片,宽度随意,一张图片经过多层卷积之后,高度就变成了1,经过paddle.squeeze()
就去掉了高度,也就说从输入的图片BCHW
经过卷积之后就成了BCW
。然后把特征顺序从BCW
改为WBC
输入到RNN中,经过两次的RNN之后,模型的最终输入为(W, B, Class_num)
。这恰好是CTCLoss函数的输入。
代码详情
使用环境:
PaddlePaddle 2.0.1
Python 3.7
!\\rm -rf __MACOSX/ 测试集/ 训练集/ dataset/
!unzip 2021A_T1_Task1_数据集含训练集和测试集.zip > out.log
步骤1:生成额外的数据集
这一步可以跳过,如果想要获取更好的精度,可以自己添加。
import os
import time
from random import choice, randint, randrange
from PIL import Image, ImageDraw, ImageFont
# 验证码图片文字的字符集
characters = '拾伍佰正仟万捌贰整陆玖圆叁零角分肆柒亿壹元'
def selectedCharacters(length):
result = ''.join(choice(characters) for _ in range(length))
return result
def getColor():
r = randint(0, 100)
g = randint(0, 100)
b = randint(0, 100)
return (r, g, b)
def main(size=(200, 100), characterNumber=6, bgcolor=(255, 255, 255)):
# 创建空白图像和绘图对象
imageTemp = Image.new('RGB', size, bgcolor)
draw01 = ImageDraw.Draw(imageTemp)
# 生成并计算随机字符串的宽度和高度
text = selectedCharacters(characterNumber)
print(text)
font = ImageFont.truetype(font_path, 40)
width, height = draw01.textsize(text, font)
if width + 2 * characterNumber > size[0] or height > size[1]:
print('尺寸不合法')
return
# 绘制随机字符串中的字符
startX = 0
widthEachCharater = width // characterNumber
for i in range(characterNumber):
startX += widthEachCharater + 1
position = (startX, (size[1] - height) // 2)
draw01.text(xy=position, text=text[i], font=font, fill=getColor())
# 对像素位置进行微调,实现扭曲的效果
imageFinal = Image.new('RGB', size, bgcolor)
pixelsFinal = imageFinal.load()
pixelsTemp = imageTemp.load()
for y in range(size[1]):
offset = randint(-1, 0)
for x in range(size[0]):
newx = x + offset
if newx >= size[0]:
newx = size[0] - 1
elif newx < 0:
newx = 0
pixelsFinal[newx, y] = pixelsTemp[x, y]
# 绘制随机颜色随机位置的干扰像素
draw02 = ImageDraw.Draw(imageFinal)
for i in range(int(size[0] * size[1] * 0.07)):
draw02.point((randrange(0, size[0]), randrange(0, size[1])), fill=getColor())
# 保存并显示图片
imageFinal.save("dataset/images/%d_%s.jpg" % (round(time.time() * 1000), text))
def create_list():
images = os.listdir('dataset/images')
f_train = open('dataset/train_list.txt', 'w', encoding='utf-8')
f_test = open('dataset/test_list.txt', 'w', encoding='utf-8')
for i, image in enumerate(images):
image_path = os.path.join('dataset/images', image).replace('\\\\', '/')
label = image.split('.')[0].split('_')[1]
if i % 100 == 0:
f_test.write('%s\\t%s\\n' % (image_path, label))
else:
f_train.write('%s\\t%s\\n' % (image_path, label))
def creat_vocabulary():
# 生成词汇表
with open('dataset/train_list.txt', 'r', encoding='utf-8') as f:
lines = f.readlines()
v = set()
for line in lines:
_, label = line.replace('\\n', '').split('\\t')
for c in label:
v.add(c)
vocabulary_path = 'dataset/vocabulary.txt'
with open(vocabulary_path, 'w', encoding='utf-8') as f:
f.write(' \\n')
for c in v:
f.write(c + '\\n')
if __name__ == '__main__':
if not os.path.exists('dataset/images'):
os.makedirs('dataset/images')
步骤2:安装依赖环境
!pip install Levenshtein
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: Levenshtein in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (0.16.0)
Requirement already satisfied: rapidfuzz<1.9,>=1.8.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Levenshtein) (1.8.2)
步骤3:读取数据集
import glob, codecs, json, os
import numpy as np
date_jpgs = glob.glob('./训练集/date/images/*.jpg')
amount_jpgs = glob.glob('./训练集/amount/images/*.jpg')
lines = codecs.open('./训练集/date/gt.json', encoding='utf-8').readlines()
lines = ''.join(lines)
date_gt = json.loads(lines.replace(',\\n}', '}'))
lines = codecs.open('./训练集/amount/gt.json', encoding='utf-8').readlines()
lines = ''.join(lines)
amount_gt = json.loads(lines.replace(',\\n}', '}'))
data_path = date_jpgs + amount_jpgs
date_gt.update(amount_gt)
s = ''
for x in date_gt:
s += date_gt[x]
char_list = list(set(list(s)))
char_list = char_list
步骤4:构造训练集
!mkdir dataset
!mkdir dataset/images
!cp 训练集/date/images/*.jpg dataset/images
!cp 训练集/amount/images/*.jpg dataset/images
mkdir: cannot create directory ‘dataset’: File exists
mkdir: cannot create directory ‘dataset/images’: File exists
with open('dataset/vocabulary.txt', 'w') as up:
for x in char_list:
up.write(x + '\\n')
data_path = glob.glob('dataset/images/*.jpg')
np.random.shuffle(data_path)
with open('dataset/train_list.txt', 'w') as up:
for x in data_path[:-100]:
up.write(f'{x}\\t{date_gt[os.path.basename(x)]}\\n')
with open('dataset/test_list.txt', 'w') as up:
for x in data_path[-100:]:
up.write(f'{x}\\t{date_gt[os.path.basename(x)]}\\n')
执行上面程序生成的图片会放在dataset/images
目录下,生成的训练数据列表和测试数据列表分别放在dataset/train_list.txt
和dataset/test_list.txt
,最后还有个数据词汇表dataset/vocabulary.txt
。
数据列表的格式如下,左边是图片的路径,右边是文字标签。
dataset/images/1617420021182_c1dw.jpg c1dw
dataset/images/1617420021204_uvht.jpg uvht
dataset/images/1617420021227_hb30.jpg hb30
dataset/images/1617420021266_4nkx.jpg 4nkx
dataset/images/1617420021296_80nv.jpg 80nv
以下是数据集词汇表的格式,一行一个字符,第一行是空格,不代表任何字符。
f
s
2
7
3
n
d
w
训练自定义数据,参考上面的格式即可。
步骤5:训练模型
不管你是自定义数据集还是使用上面生成的数据,只要文件路径正确,即可开始进行训练。该训练支持长度不一的图片输入,但是每一个batch的数据的数据长度还是要一样的,这种情况下,笔者就用了collate_fn()
函数,该函数可以把数据最长的找出来,然后把其他的数据补0,加到相同的长度。同时该函数还要输出它其中每条数据标签的实际长度,因为损失函数需要输入标签的实际长度。
在训练过程中,程序会使用VisualDL记录训练结果
import paddle
import numpy as np
import os
from datetime import datetime
from utils.model import Model
from utils.decoder import ctc_greedy_decoder, label_to_string, cer
from paddle.io import DataLoader
from utils.data import collate_fn
from utils.data import CustomDataset
from visualdl import LogWriter
# 训练数据列表路径
train_data_list_path = 'dataset/train_list.txt'
# 测试数据列表路径
test_data_list_path = 'dataset/test_list.txt'
# 词汇表路径
voc_path = 'dataset/vocabulary.txt'
# 模型保存的路径
save_model = 'models/'
# 每一批数据大小
batch_size = 32
# 预训练模型路径
pretrained_model = None
# 训练轮数
num_epoch = 100
# 初始学习率大小
learning_rate = 1e-3
# 日志记录噐
writer = LogWriter(logdir='log')
def train():
# 获取训练数据
train_dataset = CustomDataset(train_data_list_path, voc_path, img_height=32)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=True)
# 获取测试数据
test_dataset = CustomDataset(test_data_list_path, voc_path, img_height=32, is_data_enhance=False)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn)
# 获取模型
model = Model(train_dataset.vocabulary, image_height=train_dataset.img_height, channel=1)
paddle.summary(model, input_size=(batch_size, 1, train_dataset.img_height, 500))
# 设置优化方法
boundaries = [30, 100, 200]
lr = [0.1 ** l * learning_rate for l in range(len(boundaries) + 1)]
scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=boundaries, values=lr, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(),
learning_rate=scheduler,
weight_decay=paddle.regularizer.L2Decay(1e-4))
# 获取损失函数
ctc_loss = paddle.nn.CTCLoss()
# 加载预训练模型
if pretrained_model is not None:
model.set_state_dict(paddle.load(os.path.join(pretrained_model, 'model.pdparams')))
optimizer.set_state_dict(paddle.load(os.path.join(pretrained_model, 'optimizer.pdopt')))
train_step = 0
test_step = 0
# 开始训练
for epoch in range(num_epoch):
for batch_id, (inputs, labels, input_lengths, label_lengths) in enumerate(train_loader()):
out = model(inputs)
# 计算损失
input_lengths = paddle.full(shape=[batch_size], fill_value=out.shape[0], dtype='int64')
loss = ctc_loss(out, labels, input_lengths, label_lengths)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# 多卡训练只使用一个进程打印
if batch_id % 100 == 0:
print('[%s] Train epoch %d, batch %d, loss: %f' % (datetime.now(), epoch, batch_id, loss))
writer.add_scalar('Train loss', loss, train_step)
train_step += 1
# 执行评估
if epoch % 10 == 0:
model.eval()
cer = evaluate(model, test_loader, train_dataset.vocabulary)
print('[%s] Test epoch %d, cer: %f' % (datetime.now(), epoch, cer))
writer.add_scalar('Test cer', cer, test_step)
test_step += 1
model.train()
# 记录学习率
writer.add_scalar('Learning rate', scheduler.last_lr, epoch)
scheduler.step()
# 保存模型
paddle.save(model.state_dict(), os.path.join(save_model, 'model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(save_model, 'optimizer.pdopt'))
# 评估模型
def evaluate(model, test_loader, vocabulary):
cer_result = []
for batch_id, (inputs, labels, _, _) in enumerate(test_loader()):
# 执行识别
outs = model(inputs)
outs = paddle.transpose(outs, perm=[1, 0, 2])
outs = paddle.nn.functional.softmax(outs)
# 解码获取识别结果
labelss = []
out_strings = []
for out in outs:
out_string = ctc_greedy_decoder(out, vocabulary)
out_strings.append(out_string)
for i, label in enumerate(labels):
label_str = label_to_string(label, vocabulary)
labelss.append(label_str)
for out_string, label in zip(*(out_strings, labelss)):
# 计算字错率
c = cer(out_string, label) / float(len(label))
cer_result.append(c)
cer_result = float(np.mean(cer_result))
return cer_result
if __name__ == '__main__':
train()
步骤6:模型预测
训练结束之后,使用保存的模型进行预测。通过修改image_path
指定需要预测的图片路径,解码方法,笔者使用了一个最简单的贪心策略。
import os
from PIL import Image
import numpy as np
import paddle
from utils.model import Model
from utils.data import process
from utils.decoder import ctc_greedy_decoder
with open('dataset/vocabulary.txt', 'r', encoding='utf-8') as f:
vocabulary = f.readlines()
vocabulary = [v.replace('\\n', '') for v in vocabulary]
save_model = 'models/'
model = Model(vocabulary, image_height=32)
model.set_state_dict(paddle.load(os.path.join(save_model, 'model.pdparams')))
model.eval()
def infer(path):
data = process(path, img_height=32)
data = data[np.newaxis, :]
data = paddle.to_tensor(data, dtype='float32')
# 执行识别
out = model(data)
out = paddle.transpose(out, perm=[1, 0, 2])
out = paddle.nn.functional.softmax(out)[0]
# 解码获取识别结果
out_string = ctc_greedy_decoder(out, vocabulary)
# print('预测结果:%s' % out_string)
return out_string
if __name__ == '__main__':
image_path = 'dataset/images/0_8bb194207a248698017a854d62c96104.jpg'
display(Image.open(image_path))
print(infer(image_path))
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=123x33 at 0x7F4D525F08D0>
贰零贰零贰壹
from tqdm import tqdm, tqdm_notebook
result_dict = {}
for path in tqdm(glob.glob('./测试集/date/images/*.jpg')):
text = infer(path)
result_dict[os.path.basename(path)] = {
'result': text,
'confidence': 0.9
}
for path in tqdm(glob.glob('./测试集/amount/images/*.jpg')):
text = infer(path)
result_dict[os.path.basename(path)] = {
'result': text,
'confidence': 0.9
}
with open('answer.json', 'w', encoding='utf-8') as up:
json.dump(result_dict, up, ensure_ascii=False, indent=4)
!zip answer.json.zip answer.json
adding: answer.json (deflated 85%)
整理不易,点赞三连↓
以上是关于世界人工智能大赛OCR赛题方案!的主要内容,如果未能解决你的问题,请参考以下文章