Redis主从复制&哨兵&集群&常见问题

Posted LL.LEBRON

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis主从复制&哨兵&集群&常见问题相关的知识,希望对你有一定的参考价值。

Redis集群

视频指路👉黑马Redis入门到精通

一.主从复制

1-1 简介

1-1-1 单机redis带来的风险与问题

  • 问题1:机器故障
    • 现象:硬盘故障、系统崩溃
    • 本质:数据丢失,很可能对业务造成灾难性打击
    • 结论:基本上会放弃使用redis
  • 问题2:容量瓶颈
    • 现象:内存不足,从16G升级到64G,从64G升级到128G,无限升级内存
    • 本质:穷,硬件条件跟不上
    • 结论:放弃使用redis
  • 结论:为了避免单点Redis服务器故障,准备多台服务器,互相连通。将数据复制多个副本保存在不同的服务器上,连接在一起,并保证数据是同步的。即使有其中一台服务器宕机,其他服务器依然可以继续提供服务,实现Redis的高可用,同时实现数据冗余备份

1-1-2 多台服务器连接方案

  • 提供数据方:master
    • 主服务器,主节点,主库
    • 主客户端
  • 接收数据的方:slave
    • 从服务器,从节点,从库
    • 从客户端
  • 需要解决的问题
    • 数据同步
  • 核心工作
    • master的数据复制到slave中→主从复制

1-1-3 主从复制

主从复制即将master中的数据即时、有效的复制到slave中

特征:一个master可以拥有多个slave,一个slave只对应一个master(一对多

职责:

  • master
    • 写数据
    • 执行写操作时,将出现变化的数据自动同步到slave
    • 读数据(可忽略)
  • slave
    • 读数据
    • 写数据(禁止

1-1-4 主从复制的作用

  • 读写分离:master写、slave读,提高服务器的读写负载能力
  • 负载均衡:基于主从结构,配合读写分离,由slave分担master负载,并根据需求的变化,改变slave的数量,通过多个从节点分担数据读取负载,大大提高Redis服务器并发量与数据吞吐量
  • 故障恢复:当master出现问题时,由slave提供服务,实现快速的故障恢复
  • 数据冗余实现数据热备份,是持久化之外的一种数据冗余方式
  • 高可用基石:基于主从复制,构建哨兵模式与集群,实现Redis的高可用方案

1-2 主从复制的工作流程

主从复制过程大体可以分为3个阶段:

  1. 建立连接阶段(即准备阶段)
  2. 数据同步阶段
  3. 命令传播阶段

1-2-1 阶段一:建立连接

  • 建立slave到master的连接,使master能够识别slave,并保存slave端口号

主从连接(slave连接master)

  • 方式一:客户端发送命令(slave客户端)

    slaveof <masterip> <masterport>
    #例如: slaveof 127.0.0.1 6379
    
  • 方式二:启动服务器参数(启动slave服务器时)

    redis-server -slaveof <masterip> <masterport>
    
  • 方式三:服务器配置 (常用,修改slave服务器的配置文件)

    slaveof <masterip> <masterport>
    

主从断开连接

  • 客户端发送命令

    slaveof no one
    
  • 说明: slave断开连接后,不会删除已有数据,只是不再接受master发送的数据

授权访问

  • master客户端发送命令设置密码

    requirepass <password>
    
  • master配置文件设置密码

    config set requirepass <password> 
    config get requirepass
    
  • slave客户端发送命令设置密码

    auth <password>
    
  • slave配置文件设置密码

    masterauth <password>
    
  • slave启动服务器设置密码

    redis-server –a <password>
    

1-2-2 阶段二:数据同步

  • 在slave初次连接master后,复制master中的所有数据到slave
  • 将slave的数据库状态更新成master当前的数据库状态

  • 全量复制
    • 将master执行bgsave之前,master中所有的数据同步到slave中
  • 部分复制(增量复制)
    • 将master执行bgsave操作中,新加入的数据(复制缓冲区中的数据)传给slave,slave通过bgrewriteaof指令来恢复数据

数据同步阶段master说明

  1. 如果master数据量巨大,数据同步阶段应避开流量高峰期避免造成master阻塞,影响业务正常执行

  2. 复制缓冲区大小设定不合理,会导致数据溢出。如进行全量复制周期太长,进行部分复制时发现数据已经存在丢失的情况,必须进行第二次全量复制,致使slave陷入死循环状态。

    repl-backlog-size 1mb
    
  3. master单机内存占用主机内存的比例不应过大,建议使用50%-70%的内存,留下30%-50%的内存用于执行bgsave命令和创建复制缓冲区

数据同步阶段slave说明

  1. 为避免slave进行全量复制、部分复制时服务器响应阻塞或数据不同步,建议关闭此期间的对外服务

    slave-serve-stale-data yes|no
    
  2. 数据同步阶段,master发送给slave信息可以理解master是slave的一个客户端,主动向slave发送命令

  3. 多个slave同时对master请求数据同步,master发送的RDB文件增多,会对带宽造成巨大冲击,如果master带宽不足,因此数据同步需要根据业务需求,适量错峰

  4. slave过多时,建议调整拓扑结构,由一主多从结构变为树状结构,中间的节点既是master,也是 slave。注意使用树状结构时,由于层级深度,导致深度越高的slave与最顶层master间数据同步延迟较大,数据一致性变差,应谨慎选择

1-2-3 阶段三:命令传播

  • 当master数据库状态被修改后,导致主从服务器数据库状态不一致,此时需要让主从数据同步到一致的状态,同步的动作称为命令传播
  • master将接收到的数据变更命令发送给slave,slave接收命令后执行命令

命令传播阶段的部分复制

  • 命令传播阶段出现了断网现象

    • 网络闪断闪连——忽略
    • 短时间网络中断——部分复制
    • 长时间网络中断——全量复制
  • 部分复制的三个核心要素

    • 服务器的运行 id(run id)
    • 主服务器的复制积压缓冲区
    • 主从服务器的复制偏移量

服务器运行ID(runid)

  • 概念:服务器运行ID是每一台服务器每次运行的身份识别码,一台服务器多次运行可以生成多个运行id
  • 组成:运行id由40位字符组成,是一个随机的十六进制字符
    • 例如:fdc9ff13b9bbaab28db42b3d50f852bb5e3fcdce
  • 作用:运行id被用于在服务器间进行传输,识别身份
    • 如果想两次操作均对同一台服务器进行,必须每次操作携带对应的运行id,用于对方识别
  • 实现方式:运行id在每台服务器启动时自动生成的,master在首次连接slave时,会将自己的运行ID发送给slave,slave保存此ID,通过info Server命令,可以查看节点的runid

复制缓冲区

  • 概念:复制缓冲区,又名复制积压缓冲区,是一个先进先出(FIFO)的队列,用于存储服务器执行过的命令,每次传播命令,master都会将传播的命令记录下来,并存储在复制缓冲区
  • 由来:每台服务器启动时,如果开启有AOF或被连接成为master节点,即创建复制缓冲区
  • 作用:用于保存master收到的所有指令(仅影响数据变更的指令,例如set,select)
  • 数据来源:当master接收到主客户端的指令时,除了将指令执行,会将该指令存储到缓冲区中

复制缓冲区内部工作原理

  • 组成
    • 偏移量(offset)
    • 字节值
  • 工作原理
    • 通过offset区分不同的slave当前数据传播的差异
    • master记录已发送的信息对应的offset
    • slave记录已接收的信息对应的offset

主从服务器复制偏移量(offset)

  • 概念:一个数字,描述复制缓冲区中的指令字节位置
  • 分类:
    • master复制偏移量:记录发送给所有slave的指令字节对应的位置(多个)
    • slave复制偏移量:记录slave接收master发送过来的指令字节对应的位置(一个)
  • 数据来源: master端:发送一次记录一次 slave端:接收一次记录一次
  • 作用:同步信息,比对master与slave的差异,当slave断线后,恢复数据使用

数据同步+命令传播阶段工作流程

1-2-4 心跳机制

  • 进入命令传播阶段候,master与slave间需要进行信息交换,使用心跳机制进行维护,实现双方连接保持在线
  • master心跳
    • 指令:PING
    • 周期:由repl-ping-slave-period决定,默认10秒
    • 作用:判断slave是否在线
    • 查询:INFO replication 获取slave最后一次连接时间间隔,lag项维持在0或1视为正常
  • slave心跳任务
    • 指令:REPLCONF ACK {offset}
    • 周期:1秒
    • 作用1:汇报slave自己的复制偏移量,获取最新的数据变更指令
    • 作用2:判断master是否在线

心跳阶段注意事项

  • 当slave多数掉线,或延迟过高时,master为保障数据稳定性,将拒绝所有信息同步操作

    min-slaves-to-write 2 
    min-slaves-max-lag 8
    

    slave数量少于2个,或者所有slave的延迟都大于等于10秒时,强制关闭master写功能,停止数据同步

  • slave数量由slave发送REPLCONF ACK命令做确认

  • slave延迟由slave发送REPLCONF ACK命令做确认

完整流程

1-3 常见问题

1-3-1 频繁的全量复制

1-3-2 频繁的网络中断

1-3-3 数据不一致

二.哨兵模式

2-1 简介

哨兵(sentinel) 是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的master并将所有slave连接到新的master。

2-2 作用

  • 监控
    • 不断的检查master和slave是否正常运行。 master存活检测、master与slave运行情况检测
  • 通知(提醒)
    • 当被监控的服务器出现问题时,向其他(哨兵间,客户端)发送通知。
  • 自动故障转移
    • 断开master与slave连接,选取一个slave作为master,将其他slave连接到新的master,并告知客户端新的服务器地址

注意:
哨兵也是一台redis服务器,只是不提供数据服务通常哨兵配置数量为单数(1,3,…)为了确保投票机制不为平数

2-3 配置哨兵

  • 配置一拖二的主从结构
  • 配置三个哨兵(配置相同,端口不同)
    • 参看sentinel.conf
  • 启动哨兵
redis-sentinel sentinel端口号 .conf

2-4 工作原理

2-4-1 阶段一:监控阶段

  • 用于同步各个节点的状态信息
    • 获取各个sentinel的状态(是否在线)
  • 获取master的状态
    • master属性
      • runid
      • role:master
    • 各个slave的详细信息
  • 获取所有slave的状态(根据master中的slave信息)
    • slave属性
      • runid
      • role:slave
      • master_host、master_port
      • offset

2-4-2 阶段二:通知阶段

  • 各个哨兵将得到的信息相互同步(信息对称)

2-4-3 阶段三:故障转移阶段

确认master下线

  • 当某个哨兵发现主服务器挂掉了,会将master中的SentinelRedistance中的master改为SRI_S_DOWN(主观下线),并通知其他哨兵,告诉他们发现master挂掉了。
  • 其他哨兵在接收到该哨兵发送的信息后,也会尝试去连接master,如果超过半数(配置文件中设置的)确认master挂掉后,会将master中的SentinelRedistance中的master改为SRI_O_DOWN(客观下线)

推选哨兵进行处理

  • 在确认master挂掉以后,会推选出一个哨兵来进行故障转移工作(由该哨兵来指定哪个slave来做新的master)。
  • 筛选方式是哨兵互相发送消息,并且参与投票,票多者当选。

具体处理

  1. 服务器列表中挑选备选master
    • 在线的
    • 响应慢的
    • 与原master断开时间久的
    • 优先原则
      • 优先级
      • offset
      • runid
  2. 发送指令( sentinel )
    • 向新的master发送slaveof no one(断开与原master的连接)
    • 向其他slave发送slaveof 新masterIP端口(让其他slave与新的master相连)

三.集群

3-1 简介

集群架构

  • 集群就是使用网络将若干台计算机联通起来,并提供统一的管理方式,使其对外呈现单机的服务效果

集群作用

  • 分散单台服务器的访问压力,实现负载均衡
  • 分散单台服务器的存储压力,实现可扩展性
  • 降低单台服务器宕机带来的业务灾难

3-2 Redis集群结构设计

数据存储设计

  • 通过算法设计,计算出key应该保存的位置
  • 将所有的存储空间计划切割成16384份,每台主机保存一部分,每份代表的是一个存储空间,不是一个key的保存空间
  • 将key按照计算出的结果放到对应的存储空间

  • 增强可扩展性——

集群内部通讯设计

  • 各个数据库互相连通,保存各个库中槽的编号数据
  • 一次命中,直接返回
  • 一次未命中,告知具体的位置,key再直接去找对应的库保存数据

四.企业级解决方案(常见面试题)

4-1 缓存预热

问题排查

  • 请求数量较高
  • 主从之间数据吞吐量较大,数据同步操作频度较高

解决方案

  • 前置准备工作:
    • 日常例行统计数据访问记录,统计访问频度较高的热点数据
    • 利用LRU数据删除策略,构建数据留存队列,例如:storm与kafka配合
  • 准备工作:
    • 将统计结果中的数据分类,根据级别,redis优先加载级别较高的热点数据
    • 利用分布式多服务器同时进行数据读取,提速数据加载过程
    • 热点数据主从同时预热
  • 实施:
    • 使用脚本程序固定触发数据预热过程
    • 如果条件允许,使用了CDN(内容分发网络),效果会更好

总结

缓存预热就是系统启动前,提前将相关的缓存数据直接加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

4-2 缓存雪崩

数据库服务器崩溃(1)

  1. 系统平稳运行过程中,忽然数据库连接量激增
  2. 应用服务器无法及时处理请求
  3. 大量408,500错误页面出现
  4. 客户反复刷新页面获取数据
  5. 数据库崩溃
  6. 应用服务器崩溃
  7. 重启应用服务器无效
  8. Redis服务器崩溃
  9. Redis集群崩溃
  10. 重启数据库后再次被瞬间流量放倒

问题排查

  1. 在一个较短的时间内,缓存中较多的key集中过期
  2. 此周期内请求访问过期的数据,redis未命中,redis向数据库获取数据
  3. 数据库同时接收到大量的请求无法及时处理
  4. Redis大量请求被积压,开始出现超时现象
  5. 数据库流量激增,数据库崩溃
  6. 重启后仍然面对缓存中无数据可用
  7. Redis服务器资源被严重占用,Redis服务器崩溃
  8. Redis集群呈现崩塌,集群瓦解
  9. 应用服务器无法及时得到数据响应请求,来自客户端的请求数量越来越多,应用服务器崩溃
  10. 应用服务器,redis,数据库全部重启,效果不理想

问题分析

  • 短时间范围内
  • 大量key集中过期

解决方案(道)

  1. 更多的页面静态化处理
  2. 构建多级缓存架构 nginx缓存+redis缓存+ehcache缓存
  3. 检测mysql严重耗时业务,进行优化对数据库的瓶颈排查:例如超时查询、耗时较高事务等
  4. 灾难预警机制,监控redis服务器性能指标
    • CPU占用、CPU使用率
    • 内存容量
    • 查询平均响应时间
    • 线程数
  5. 限流、降级 短时间范围内牺牲一些客户体验,限制一部分请求访问,降低应用服务器压力,待业务低速运转后再逐步放开访问

解决方案(术)

  1. LRU与LFU切换
  2. 数据有效期策略调整
    • 根据业务数据有效期进行分类错峰,A类90分钟,B类80分钟,C类70分钟
    • 过期时间使用固定时间+随机值的形式,稀释集中到期的key的数量
  3. 超热数据使用永久key
  4. 定期维护(自动+人工) 对即将过期数据做访问量分析,确认是否延时,配合访问量统计,做热点数据的延时
  5. 加锁 慎用!

总结

缓存雪崩就是瞬间过期数据量太大,导致对数据库服务器造成压力。如能够有效避免过期时间集中,可以有效解决雪崩现象的出现 (约40%),配合其他策略一起使用,并监控服务器的运行数据,根据运行记录做快速调整。

](https://nyimapicture.oss-cn-beijing.aliyuncs.com/img/20200608143749.png)

4-3 缓存击穿

数据库服务器崩溃(2)

  1. 系统平稳运行过程中
  2. 数据库连接量瞬间激增
  3. Redis服务器无大量key过期
  4. Redis内存平稳,无波动
  5. Redis服务器CPU正常
  6. 数据库崩溃

问题排查

  1. Redis中某个key过期,该key访问量巨大
  2. 多个数据请求从服务器直接压到Redis后,均未命中
  3. Redis在短时间内发起了大量对数据库中同一数据的访问

问题分析

  • 单个key高热数据
  • key过期

解决方案(术)

  1. 预先设定

    • 以电商为例,每个商家根据店铺等级,指定若干款主打商品,在购物节期间,加大此类信息key的过期时长

    注意:购物节不仅仅指当天,以及后续若干天,访问峰值呈现逐渐降低的趋势

  2. 现场调整

    • 监控访问量,对自然流量激增的数据延长过期时间或设置为永久性key
  3. 后台刷新数据

    • 启动定时任务,高峰期来临之前,刷新数据有效期,确保不丢失
  4. 二级缓存

    • 设置不同的失效时间,保障不会被同时淘汰就行
  5. 加锁

    • 分布式锁,防止被击穿,但是要注意也是性能瓶颈,慎重!

总结

缓存击穿就是单个高热数据过期的瞬间,数据访问量较大,未命中redis后,发起了大量对同一数据的数据库访问,导致对数据库服务器造成压力。应对策略应该在业务数据分析与预防方面进行,配合运行监控测试与即时调整策略,毕竟单个key的过期监控难度较高,配合雪崩处理策略即可

4-4 缓存穿透

数据库服务器崩溃(3)

  1. 系统平稳运行过程中
  2. 应用服务器流量随时间增量较大
  3. Redis服务器命中率随时间逐步降低
  4. Redis内存平稳,内存无压力
  5. Redis服务器CPU占用激增
  6. 数据库服务器压力激增
  7. 数据库崩溃

问题排查

  1. Redis中大面积出现未命中
  2. 出现非正常URL访

问题分析

  • 获取的数据在数据库中也不存在,数据库查询未得到对应数据
  • Redis获取到null数据未进行持久化,直接返回
  • 下次此类数据到达重复上述过程
  • 出现黑客攻击服务器

解决方案(术)

  1. 缓存null

    • 对查询结果为null的数据进行缓存(长期使用,定期清理),设定短时限,例如30-60秒,最高5分钟
  2. 白名单策略

    • 提前预热各种分类数据id对应的bitmaps,id作为bitmaps的offset,相当于设置了数据白名单。当加载正常数据时,放行,加载异常数据时直接拦截(效率偏低)
    • 使用布隆过滤器(有关布隆过滤器的命中问题对当前状况可以忽略)
  3. 实施监控

    实时监控redis命中率(业务正常范围时,通常会有一个波动值)与null数据的占比

    • 非活动时段波动:通常检测3-5倍,超过5倍纳入重点排查对象
    • 活动时段波动:通常检测10-50倍,超过50倍纳入重点排查对象

    根据倍数不同,启动不同的排查流程。然后使用黑名单进行防控(运营)

  4. key加密

    • 问题出现后,临时启动防灾业务key,对key进行业务层传输加密服务,设定校验程序,过来的key校验,例如每天随机分配60个加密串,挑选2到3个,混淆到页面数据id中,发现访问key不满足规则,驳回数据访问

总结

缓存穿透访问了不存在的数据,跳过了合法数据的redis数据缓存阶段,每次访问数据库,导致对数据库服务器造成压力。通常此类数据的出现量是一个较低的值,当出现此类情况以毒攻毒,并及时报警。应对策略应该在临时预案防范方面多做文章。

无论是黑名单还是白名单,都是对整体系统的压力,警报解除后尽快移除。


最后喜欢的小伙伴,记得三联哦!😏🍭😘

以上是关于Redis主从复制&哨兵&集群&常见问题的主要内容,如果未能解决你的问题,请参考以下文章

Redis-----大集合(主从复制,哨兵,集群)

Redis-----大集合(主从复制,哨兵,集群)

Redis简单介绍4-主从复制&哨兵监控&集群分片

redis学习篇主从&哨兵&集群架构详解

Redis主从复制&哨兵模式

Redis主从复制&哨兵模式