深入浅出之C++11新特性
Posted 浩瀚之水_csdn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入浅出之C++11新特性相关的知识,希望对你有一定的参考价值。
1. auto类型赋予新含义
1.1 auto类型定义
在之前的 C++ 版本中,auto 关键字用来指明变量的存储类型,它和 static 关键字是相对的。auto 表示变量是自动存储的,这也是编译器的默认规则,所以写不写都一样,一般我们也不写,这使得 auto 关键字的存在变得非常鸡肋。
C++11 赋予 auto 关键字新的含义,使用它来做自动类型推导。也就是说,使用了 auto 关键字以后,编译器会在编译期间自动推导出变量的类型,这样我们就不用手动指明变量的数据类型了。
auto 关键字基本的使用语法如下:
auto name = value;
name 是变量的名字,value 是变量的初始值。
注意:auto 仅仅是一个占位符,在编译器期间它会被真正的类型所替代。或者说,C++ 中的变量必须是有明确类型的,只是这个类型是由编译器自己推导出来的。
auto n = 10;
auto f = 12.8;
auto p = &n;
auto url = "http://c.biancheng.net/cplus/";
第 1 行中,10 是一个整数,默认是 int 类型,所以推导出变量 n 的类型是 int。
第 2 行中,12.8 是一个小数,默认是 double 类型,所以推导出变量 f 的类型是 double。
第 3 行中,&n 的结果是一个 int* 类型的指针,所以推导出变量 p 的类型是 int*。
第 4 行中,由双引号""包围起来的字符串是 const char* 类型,所以推导出变量 url 的类型是 const char*,也即一个常量指针。
auto 除了可以独立使用,还可以和某些具体类型混合使用,这样 auto 表示的就是“半个”类型,而不是完整的类型。
int x = 0;
auto *p1 = &x; //p1 为 int *,auto 推导为 int
auto p2 = &x; //p2 为 int*,auto 推导为 int*
auto &r1 = x; //r1 为 int&,auto 推导为 int
auto r2 = r1; //r2 为 int,auto 推导为 int
auto 与 const 结合的用法:
int x = 0;
const auto n = x; //n 为 const int ,auto 被推导为 int
auto f = n; //f 为 const int,auto 被推导为 int(const 属性被抛弃)
const auto &r1 = x; //r1 为 const int& 类型,auto 被推导为 int
auto &r2 = r1; //r1 为 const int& 类型,auto 被推导为 const int 类型
结论:
- 当类型不为引用时,auto 的推导结果将不保留表达式的 const 属性;
- 当类型为引用时,auto 的推导结果将保留表达式的 const 属性。
1.2 auto 的限制
- 使用 auto 的时候必须对变量进行初始化
- 当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void TestAuto()
{
auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}
- auto不能作为函数的参数。 列如:
void TestAuto(auto a) {} //错误
- auto不能直接用来声明数组。 列如:
auto b[] = {4,5,6}; //错误
- auto不能定义类的非静态成员变量
- 实例化模板时不能使用auto作为模板参数
1.3 for循环的auto用法
- 拷贝range的元素时,使用for(auto x : range).
for(auto a:b)中b为一个容器,效果是利用a遍历并获得b容器中的每一个值,但是a无法影响到b容器中的元素。
int array[] = { 1, 2, 3, 4, 5 };
for (auto e : array)
e *= 2;
for (auto e : array)
cout << e << " ";
输出结果:1 2 3 4 5
- 修改range的元素时,使用for(auto && x : range).
for(auto &a:b)中加了引用符号,可以对容器中的内容进行赋值,即可通过对a赋值来做到容器b的内容填充。
int array[] = { 1, 2, 3, 4, 5 };
for (auto& e : array)
e *= 2;
for (auto e : array)
cout << e << " ";
输出结果:2 4 6 8 10
- 只读range的元素时,使用for(const auto & x : range).
int array[] = { 1, 2, 3, 4, 5 };
for (const auto& e : array)
e *= 2;
for (auto e : array)
cout << e << " ";
输出结果:错误,不能执行e *= 2;
1.4 auto 的应用
- 使用 auto 定义迭代器
auto 的一个典型应用场景是用来定义 stl 的迭代器。
我们在使用 stl 容器的时候,需要使用迭代器来遍历容器里面的元素;不同容器的迭代器有不同的类型,在定义迭代器时必须指明。而迭代器的类型有时候比较复杂,书写起来很麻烦,请看下面的例子:
#include <vector>
using namespace std;
int main(){
vector< vector<int> > v;
vector< vector<int> >::iterator i = v.begin();
return 0;
}
可以看出来,定义迭代器 i 的时候,类型书写比较冗长,容易出错。然而有了 auto 类型推导,我们大可不必这样,只写一个 auto 即可。
修改上面的代码,使之变得更加简洁:
#include <vector>
using namespace std;
int main(){
vector< vector<int> > v;
auto i = v.begin(); //使用 auto 代替具体的类型
return 0;
}
auto 可以根据表达式 v.begin() 的类型(begin() 函数的返回值类型)来推导出变量 i 的类型。
- auto 用于泛型编程
auto 的另一个应用就是当我们不知道变量是什么类型,或者不希望指明具体类型的时候,比如泛型编程中。我们接着看例子:
#include <iostream>
using namespace std;
class A{
public:
static int get(void){
return 100;
}
};
class B{
public:
static const char* get(void){
return "http://c.biancheng.net/cplus/";
}
};
template <typename T>
void func(void){
auto val = T::get();
cout << val << endl;
}
int main(void){
func<A>();
func<B>();
return 0;
}
2. decltype类型
2.1 auto与decltype区别
auto 和 decltype 关键字都可以自动推导出变量的类型,但它们的用法是有区别的:
auto varname = value;
decltype(exp) varname = value;
其中,varname 表示变量名,value 表示赋给变量的值,exp 表示一个表达式。
auto 根据=
右边的初始值 value 推导出变量的类型,而 decltype 根据 exp 表达式推导出变量的类型,跟=
右边的 value 没有关系。
auto 要求变量必须初始化,而 decltype 不要求。这很容易理解,auto 是根据变量的初始值来推导出变量类型的,如果不初始化,变量的类型也就无法推导了。decltype 可以写成下面的形式:
decltype(exp) varname;
int a = 0;
decltype(a) b = 1; //b 被推导成了 int
decltype(10.8) x = 5.5; //x 被推导成了 double
decltype(x + 100) y; //y 被推导成了 double
2.2 decltype 推导规则
三条规则:
- 如果 exp 是一个不被括号
( )
包围的表达式,或者是一个类成员访问表达式,或者是一个单独的变量,那么 decltype(exp) 的类型就和 exp 一致,这是最普遍最常见的情况。 - 如果 exp 是函数调用,那么 decltype(exp) 的类型就和函数返回值的类型一致。
- 如果 exp 是一个左值,或者被括号
( )
包围,那么 decltype(exp) 的类型就是 exp 的引用;假设 exp 的类型为 T,那么 decltype(exp) 的类型就是 T&。
int n = 0;
const int &r = n;
Student stu;
decltype(n) a = n; //n 为 int 类型,a 被推导为 int 类型
decltype(r) b = n; //r 为 const int& 类型, b 被推导为 const int& 类型
//函数声明
int& func_int_r(int, char); //返回值为 int&
int&& func_int_rr(void); //返回值为 int&&
int func_int(double); //返回值为 int
const int& fun_cint_r(int, int, int); //返回值为 const int&
const int&& func_cint_rr(void); //返回值为 const int&&
//decltype类型推导
int n = 100;
decltype(func_int_r(100, 'A')) a = n; //a 的类型为 int&
decltype(func_int_rr()) b = 0; //b 的类型为 int&&
decltype(func_int(10.5)) c = 0; //c 的类型为 int
decltype(fun_cint_r(1,2,3)) x = n; //x 的类型为 const int &
decltype(func_cint_rr()) y = 0; // y 的类型为 const int&&
//加法表达式
int n = 0, m = 0;
decltype(n + m) c = 0; //n+m 得到一个右值,符合推导规则一,所以推导结果为 int
decltype(n = n + m) d = c; //n=n+m 得到一个左值,符号推导规则三,所以推导结果为 int&
3. 列表初始化
C++98中,标准允许使用花括号{}对数组元素和结构体进行统一的列表初始值设定。
int i_arr[3] = { 1, 2, 3 };
long l_arr[] = { 1, 3, 2, 4 };
struct A
{
int x;
int y;
} a = { 1, 2 };
但是这种初始化方式的适用性非常狭窄,只有上面提到的这两种数据类型可以使用初始化列表。
对对于一些自定义类型,却不行.
vector<int> v{1,2,3,4,5};
在 C++11 中,初始化列表的适用性被大大增加了。
// 内置类型
int x1 = {10};
int x2{10}
// 数组
int arr1[5] {1,2,3,4,5}
int arr2[]{1,2,3,4,5};
// 标准容器
vector<int> v{1,2,3}
map<int,int> m{{1,1},{2,2}}
// 自定义类型
class Point
{
int x;
int y;
}
Power p{1,2};
4. 智能指针
4.1 shared_ptr
4.1.1 shared_ptr基本用法
shared_ptr采用引用计数的方式管理所指向的对象。当有一个新的shared_ptr指向同一个对象时(复制shared_ptr等),引用计数加1。当shared_ptr离开作用域时,引用计数减1。当引用计数为0时,释放所管理的内存。
这样做的好处在于解放了程序员手动释放内存的压力。之前,为了处理程序中的异常情况,往往需要将指针手动封装到类中,通过析构函数来释放动态分配的内存;现在这一过程就可以交给shared_ptr去做了。
一般我们使用make_shared来获得shared_ptr。
cout<<"test shared_ptr base usage:"<<endl;
shared_ptr<string> p1 = make_shared<string>("");
if(p1 && p1->empty())
*p1 = "hello";
auto p2 = make_shared<string>("world");
cout<<*p1<<' '<<*p2<<endl;
cout<<"test shared_ptr use_count:"<<endl;
cout<<"p1 cnt:"<<p1.use_count()<<"\\tp2 cnt:"<<p2.use_count()<<endl;
auto p3 = p2;
cout<<"p1 cnt:"<<p1.use_count()<<"\\tp2 cnt:"<<p2.use_count()<<"\\tp3 cnt:"<<p3.use_count()<<endl;
p2 = p1;
cout<<"p1 cnt:"<<p1.use_count()<<"\\tp2 cnt:"<<p2.use_count()<<"\\tp3 cnt:"<<p3.use_count()<<endl;
4.1.2 shared_ptr和new
shared_ptr可以使用一个new表达式返回的指针进行初始化。
cout<<"test shared_ptr and new:"<<endl;
shared_ptr<int> p4(new int(1024));
//shared_ptr<int> p5 = new int(1024); // wrong, no implicit constructor
cout<<*p4<<endl;
但是,不能将一个new表达式返回的指针赋值给shared_ptr。
另外,特别需要注意的是,不要混用new和shared_ptr!
void process(shared_ptr<int> ptr)
{
cout<<"in process use_count:"<<ptr.use_count()<<endl;
}
cout<<"don't mix shared_ptr and normal pointer:"<<endl;
shared_ptr<int> p5(new int(1024));
process(p5);
int v5 = *p5;
cout<<"v5: "<<v5<<endl;
int *p6 = new int(1024);
process(shared_ptr<int>(p6));
int v6 = *p6;
cout<<"v6: "<<v6<<endl;
上面的程序片段会输出:
in process use_count:2
v5: 1024
in process use_count:1
v6: 0
可以看到,第二次process p6时,shared_ptr的引用计数为1,当离开process的作用域时,会释放对应的内存,此时p6成为了悬挂指针。
所以,一旦将一个new表达式返回的指针交由shared_ptr管理之后,就不要再通过普通指针访问这块内存!
4.1.3 shared_ptr.reset
shared_ptr可以通过reset方法重置指向另一个对象,此时原对象的引用计数减一。
cout<<"test shared_ptr reset:"<<endl;
cout<<"p1 cnt:"<<p1.use_count()<<"\\tp2 cnt:"<<p2.use_count()<<"\\tp3 nt:"<<p3.use_count()<<endl;
p1.reset(new string("cpp11"));
cout<<"p1 cnt:"<<p1.use_count()<<"\\tp2 cnt:"<<p2.use_count()<<"\\tp3 cnt:"<<p3.use_count()<<endl;
4.1.4 shared_ptr deleter
可以定制一个deleter函数,用于在shared_ptr释放对象时调用。
void print_at_delete(int *p)
{
cout<<"deleting..."<<p<<'\\t'<<*p<<endl;
delete p;
}
cout<<"test shared_ptr deleter:"<<endl;
int *p7 = new int(1024);
shared_ptr<int> p8(p7, print_at_delete);
p8 = make_shared<int>(1025);
4.2 unique_ptr
4.2.1 unique_ptr基本用法
unique_ptr对于所指向的对象,正如其名字所示,是独占的。所以,不可以对unique_ptr进行拷贝、赋值等操作,但是可以通过release函数在unique_ptr之间转移控制权。
cout<<"test unique_ptr base usage:"<<endl;
unique_ptr<int> up1(new int(1024));
cout<<"up1: "<<*up1<<endl;
unique_ptr<int> up2(up1.release());
cout<<"up2: "<<*up2<<endl;
//unique_ptr<int> up3(up1); // wrong, unique_ptr can not copy
//up2 = up1; // wrong, unique_ptr can not copy
unique_ptr<int> up4(new int(1025));
up4.reset(up2.release());
cout<<"up4: "<<*up4<<endl;
4.2.2 unique_ptr作为参数和返回值
上述对于拷贝的限制,有两个特殊情况,即unique_ptr可以作为函数的返回值和参数使用,这时虽然也有隐含的拷贝存在,但是并非不可行的。
unique_ptr<int> clone(int p)
{
return unique_ptr<int>(new int(p));
}
void process_unique_ptr(unique_ptr<int> up)
{
cout<<"process unique ptr: "<<*up<<endl;
}
cout<<"test unique_ptr parameter and return value:"<<endl;
auto up5 = clone(1024);
cout<<"up5: "<<*up5<<endl;
process_unique_ptr(move(up5));
//cout<<"up5 after process: "<<*up5<<endl; // would cause segmentfault
这里的std::move函数,以后再单独具体细说^_^
4.2.3 unique_ptr deleter
unique_ptr同样可以设置deleter,和shared_ptr不同的是,它需要在模板参数中指定deleter的类型。好在我们有decltype这个利器,不然写起来好麻烦。
cout<<"test unique_ptr deleter:"<<endl;
int *p9 = new int(1024);
unique_ptr<int, decltype(print_at_delete) *> up6(p9, print_at_delete);
unique_ptr<int> up7(new int(1025));
up6.reset(up7.release());
4.3 weak_ptr
weak_ptr一般和shared_ptr配合使用。它可以指向shared_ptr所指向的对象,但是却不增加对象的引用计数。这样就有可能出现weak_ptr所指向的对象实际上已经被释放了的情况。因此,weak_ptr有一个lock函数,尝试取回一个指向对象的shared_ptr。
cout<<"test weak_ptr basic usage:"<<endl;
auto p10 = make_shared<int>(1024);
weak_ptr<int> wp1(p10);
cout<<"p10 use_count: "<<p10.use_count()<<endl;
//p10.reset(new int(1025)); // this will cause wp1.lock() return a false obj
shared_ptr<int> p11 = wp1.lock();
if(p11) cout<<"wp1: "<<*p11<<" use count: "<<p11.use_count()<<endl;
4.4 总结
- shared_ptr采用引用计数的方式管理所指向的对象。
- shared_ptr可以使用一个new表达式返回的指针进行初始化;但是,不能将一个new表达式返回的指针赋值给shared_ptr。
- 一旦将一个new表达式返回的指针交由shared_ptr管理之后,就不要再通过普通指针访问这块内存。
- shared_ptr可以通过reset方法重置指向另一个对象,此时原对象的引用计数减一。
- 可以定制一个deleter函数,用于在shared_ptr释放对象时调用。
- unique_ptr对于所指向的对象,是独占的。
- 不可以对unique_ptr进行拷贝、赋值等操作,但是可以通过release函数在unique_ptr之间转移控制权。
- unique_ptr可以作为函数的返回值和参数使用。
- unique_ptr同样可以设置deleter,需要在模板参数中指定deleter的类型。
- weak_ptr一般和shared_ptr配合使用。它可以指向shared_ptr所指向的对象,但是却不增加对象的引用计数。
- weak_ptr有一个lock函数,尝试取回一个指向对象的shared_ptr。
参考:
以上是关于深入浅出之C++11新特性的主要内容,如果未能解决你的问题,请参考以下文章
译ECMAScript 2016, 2017, 2018 新特性之必读篇