ElasticSearch 在Java中的各种实现

Posted splendor.s

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch 在Java中的各种实现相关的知识,希望对你有一定的参考价值。

 ES JavaAPI的相关体系:

词条查询 

       所谓词条查询,也就是ES不会对查询条件进行分词处理,只有当词条和查询字符串完全匹配时,才会被查询到。

     等值查询-term

等值查询,即筛选出一个字段等于特定值的所有记录。

 【SQL】

select * from person where name = '张无忌';

 【ES】「注意查询字段带上keyword」

GET /person/_search

 "query": 
  "term": 
   "name.keyword": 
    "value": "张无忌",
    "boost": 1.0
   
  
 

注意⚠️:ElasticSearch 5.0以后,string类型有重大变更,移除了string类型,string字段被拆分成两种新的数据类型: text用于全文搜索的,而keyword用于关键词搜索。

「查询结果:」


  "took" : 0,
  "timed_out" : false,
  "_shards" :  // 分片信息
    "total" : 1, // 总计分片数
    "successful" : 1, // 查询成功的分片数
    "skipped" : 0, // 跳过查询的分片数
    "failed" : 0  // 查询失败的分片数
  ,
  "hits" :  // 命中结果
    "total" : 
      "value" : 1, // 数量
      "relation" : "eq"  // 关系:等于
    ,
    "max_score" : 2.8526313,  // 最高分数
    "hits" : [
      
        "_index" : "person", // 索引
        "_type" : "_doc", // 类型
        "_id" : "1",
        "_score" : 2.8526313,
        "_source" : 
          "address" : "光明顶",
          "modifyTime" : "2021-06-29 16:48:56",
          "createTime" : "2021-05-14 16:50:33",
          "sect" : "明教",
          "sex" : "男",
          "skill" : "九阳神功",
          "name" : "张无忌",
          "id" : 1,
          "power" : 99,
          "age" : 18
        
      
    ]
  

「Java中构造ES请求的方式:」(后续例子中只保留SearchSourceBuilder的构建语句)

/**
 * term精确查询
 *
 * @throws IOException
 */

@Autowired
private RestHighLevelClient client;

@Test
public void queryTerm() throws IOException 
 // 根据索引创建查询请求
    SearchRequest searchRequest = new SearchRequest("person");
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    // 构建查询语句
    searchSourceBuilder.query(QueryBuilders.termQuery("name.keyword", "张无忌"));
    System.out.println("searchSourceBuilder=====================" + searchSourceBuilder);
    searchRequest.source(searchSourceBuilder);
    SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
    System.out.println(JSONObject.toJSON(response));

查看查询结果,会发现ES查询结果中会带有_score这一项,ES会根据结果匹配程度进行评分。打分是会耗费性能的,如果确认自己的查询不需要评分,就设置查询语句关闭评分:

GET /person/_search

 "query": 
  "constant_score": 
   "filter": 
    "term": 
     "sect.keyword": 
      "value": "张无忌",
      "boost": 1.0
     
    
   ,
   "boost": 1.0
  
 

「Java构建查询语句:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 这样构造的查询条件,将不进行score计算,从而提高查询效率
searchSourceBuilder.query(QueryBuilders.constantScoreQuery(QueryBuilders.termQuery("sect.keyword", "明教")));

多值查询-terms

多条件查询类似mysql里的IN查询,例如:

select * from persons where sect in('明教','武当派');

「ES查询语句:」

GET /person/_search

 "query": 
  "terms": 
   "sect.keyword": [
    "明教",
    "武当派"
   ],
   "boost": 1.0
  
 

「Java实现:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.termsQuery("sect.keyword", Arrays.asList("明教", "武当派")));

范围查询-range

范围查询,即查询某字段在特定区间的记录。

「SQL:」

select * from pesons where age between 18 and 22;

「ES查询语句:」

GET /person/_search

 "query": 
  "range": 
   "age": 
    "from": 10,
    "to": 20,
    "include_lower": true,
    "include_upper": true,
    "boost": 1.0
   
  
 

「Java构建查询条件:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.rangeQuery("age").gte(10).lte(30));

前缀查询-prefix

前缀查询类似于SQL中的模糊查询。

「SQL:」

select * from persons where sect like '武当%';

「ES查询语句:」


 "query": 
  "prefix": 
   "sect.keyword": 
    "value": "武当",
    "boost": 1.0
   
  
 

「Java构建查询条件:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.prefixQuery("sect.keyword","武当"));

通配符查询-wildcard

通配符查询,与前缀查询类似,都属于模糊查询的范畴,但通配符显然功能更强。

「SQL:」

select * from persons where name like '张%忌';

「ES查询语句:」


 "query": 
  "wildcard": 
   "sect.keyword": 
    "wildcard": "张*忌",
    "boost": 1.0
   
  
 

「Java构建查询条件:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.wildcardQuery("sect.keyword","张*忌"));

复合查询

前面的例子都是单个条件查询,在实际应用中,我们很有可能会过滤多个值或字段。先看一个简单的例子:

select * from persons where sex = '女' and sect = '明教';

这样的多条件等值查询,就要借用到组合过滤器了,其查询语句是:


 "query": 
  "bool": 
   "must": [
    
        "term": 
      "sex": 
       "value": "女",
       "boost": 1.0
      
     
    ,
    
     "term": 
      "sect.keywords": 
       "value": "明教",
       "boost": 1.0
      
     
    
   ],
   "adjust_pure_negative": true,
   "boost": 1.0
  
 

Java构造查询语句:

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
        .must(QueryBuilders.termQuery("sex", "女"))
        .must(QueryBuilders.termQuery("sect.keyword", "明教"))
);

布尔查询

布尔过滤器(bool filter)属于复合过滤器(compound filter)的一种 ,可以接受多个其他过滤器作为参数,并将这些过滤器结合成各式各样的布尔(逻辑)组合。

bool 过滤器下可以有4种子条件,可以任选其中任意一个或多个。


   "bool" : 
      "must" :     [],
      "should" :   [],
      "must_not" : [],
   
  • **must**:所有的语句都必须匹配,与 ‘=’ 等价。

  • **must_not**:所有的语句都不能匹配,与 ‘!=’ 或 not in 等价。

  • **should**:至少有n个语句要匹配,n由参数控制。

「精度控制:」

所有 must 语句必须匹配,所有 must_not 语句都必须不匹配,但有多少 should 语句应该匹配呢?默认情况下,没有 should 语句是必须匹配的,只有一个例外:那就是当没有 must 语句的时候,至少有一个 should 语句必须匹配。

我们可以通过 minimum_should_match 参数控制需要匹配的 should 语句的数量,它既可以是一个绝对的数字,又可以是个百分比:

GET /person/_search

 "query": 
  "bool": 
   "must": [
    
     "term": 
      "sex": 
       "value": "女",
       "boost": 1.0
      
     
    
   ],
   "should": [
    
     "term": 
      "address.keyword": 
       "value": "峨眉山",
       "boost": 1.0
      
     
    ,
    
     "term": 
      "sect.keyword": 
       "value": "明教",
       "boost": 1.0
      
     
    
   ],
   "adjust_pure_negative": true,
   "minimum_should_match": "1",
   "boost": 1.0
  
 

 「Java构建查询语句:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
        .must(QueryBuilders.termQuery("sex", "女"))
        .should(QueryBuilders.termQuery("address.word", "峨眉山"))
        .should(QueryBuilders.termQuery("sect.keyword", "明教"))
        .minimumShouldMatch(1)
);

最后,看一个复杂些的例子,将bool的各子句联合使用:

select 
 *
from
 persons
where 
 sex = '女'
and
 age between 30 and 40
and 
 sect != '明教'
and 
 (address = '峨眉山' OR skill = '暗器')

用 Elasticsearch 来表示上面的 SQL 例子:

GET /person/_search

 "query": 
  "bool": 
   "must": [
    
     "term": 
      "sex": 
       "value": "女",
       "boost": 1.0
      
     
    ,
    
     "range": 
      "age": 
       "from": 30,
       "to": 40,
       "include_lower": true,
       "include_upper": true,
       "boost": 1.0
      
     
    
   ],
   "must_not": [
    
     "term": 
      "sect.keyword": 
       "value": "明教",
       "boost": 1.0
      
     
    
   ],
   "should": [
    
     "term": 
      "address.keyword": 
       "value": "峨眉山",
       "boost": 1.0
      
     
    ,
    
     "term": 
      "skill.keyword": 
       "value": "暗器",
       "boost": 1.0
      
     
    
   ],
   "adjust_pure_negative": true,
   "minimum_should_match": "1",
   "boost": 1.0
  
 

「用Java构建这个查询条件:」

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery()
        .must(QueryBuilders.termQuery("sex", "女"))
        .must(QueryBuilders.rangeQuery("age").gte(30).lte(40))
        .mustNot(QueryBuilders.termQuery("sect.keyword", "明教"))
        .should(QueryBuilders.termQuery("address.keyword", "峨眉山"))
        .should(QueryBuilders.rangeQuery("power.keyword").gte(50).lte(80))
        .minimumShouldMatch(1);  // 设置should至少需要满足几个条件

// 将BoolQueryBuilder构建到SearchSourceBuilder中
searchSourceBuilder.query(boolQueryBuilder);

Filter查询

query和filter的区别:query查询的时候,会先比较查询条件,然后计算分值,最后返回文档结果;而filter是先判断是否满足查询条件,如果不满足会缓存查询结果(记录该文档不满足结果),满足的话,就直接缓存结果,「filter不会对结果进行评分,能够提高查询效率」

filter的使用方式比较多样,下面用几个例子演示一下。

「方式一,单独使用:」


 "query": 
  "bool": 
   "filter": [
    
     "term": 
      "sex": 
       "value": "男",
       "boost": 1.0
      
     
    
   ],
   "adjust_pure_negative": true,
   "boost": 1.0
  
 

单独使用时,filter与must基本一样,不同的是「filter不计算评分,效率更高」

Java构建查询语句:

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
        .filter(QueryBuilders.termQuery("sex", "男"))
);

「方式二,和must、must_not同级,相当于子查询:」

select * from (select * from persons where sect = '明教')) a where sex = '女';

ES查询语句:


 "query": 
  "bool": 
   "must": [
    
     "term": 
      "sect.keyword": 
       "value": "明教",
       "boost": 1.0
      
     
    
   ],
   "filter": [
    
     "term": 
      "sex": 
       "value": "女",
       "boost": 1.0
      
     
    
   ],
   "adjust_pure_negative": true,
   "boost": 1.0
  
 

Java语句构建:

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
        .must(QueryBuilders.termQuery("sect.keyword", "明教"))
        .filter(QueryBuilders.termQuery("sex", "女"))
);

「方式三,将must、must_not置于filter下,这种方式是最常用的:」


 "query": 
  "bool": 
   "filter": [
    
     "bool": 
      "must": [
       
        "term": 
         "sect.keyword": 
          "value": "明教",
          "boost": 1.0
         
        
       ,
       
        "range": 
         "age": 
          "from": 20,
          "to": 35,
          "include_lower": true,
          "include_upper": true,
          "boost": 1.0
         
        
       
      ],
      "must_not": [
       
        "term": 
         "sex.keyword": 
          "value": "女",
          "boost": 1.0
         
        
       
      ],
      "adjust_pure_negative": true,
      "boost": 1.0
     
    
   ],
   "adjust_pure_negative": true,
   "boost": 1.0
  
 

Java语句构建:

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 构建查询语句
searchSourceBuilder.query(QueryBuilders.boolQuery()
        .filter(QueryBuilders.boolQuery()
                .must(QueryBuilders.termQuery("sect.keyword", "明教"))
                .must(QueryBuilders.rangeQuery("age").gte(20).lte(35))
                .mustNot(QueryBuilders.termQuery("sex.keyword", "女")))
);

聚合查询

最值、平均值、求和

「案例:查询最大年龄、最小年龄、平均年龄。」

「SQL:」

select max(age) from persons;

「ES:」

GET /person/_search

 "aggregations": 
  "max_age": 
   "max": 
    "field": "age"
   
  
 

「Java:」

@Autowired
private RestHighLevelClient client;

@Test
public void maxQueryTest() throws IOException 
 // 聚合查询条件
    AggregationBuilder aggBuilder = AggregationBuilders.max("max_age").field("age");
    SearchRequest searchRequest = new SearchRequest("person");
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    // 将聚合查询条件构建到SearchSourceBuilder中
    searchSourceBuilder.aggregation(aggBuilder);
    System.out.println("searchSourceBuilder----->" + searchSourceBuilder);

    searchRequest.source(searchSourceBuilder);
    // 执行查询,获取SearchResponse
    SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
    System.out.println(JSONObject.toJSON(response));

使用聚合查询,结果中默认只会返回10条文档数据(当然我们关心的是聚合的结果,而非文档)。返回多少条数据可以自主控制

GET /person/_search

 "size": 20,
 "aggregations": 
  "max_age": 
   "max": 
    "field": "age"
   
  
 

而Java中只需增加下面一条语句即可:

searchSourceBuilder.size(20);

与max类似,其他统计查询也很简单:

AggregationBuilder minBuilder = AggregationBuilders.min("min_age").field("age");
AggregationBuilder avgBuilder = AggregationBuilders.avg("min_age").field("age");
AggregationBuilder sumBuilder = AggregationBuilders.sum("min_age").field("age");
AggregationBuilder countBuilder = AggregationBuilders.count("min_age").field("age");

去重查询

「案例:查询一共有多少个门派。」

「SQL:」

select count(distinct sect) from persons;

【ES:】


 "aggregations": 
  "sect_count": 
   "cardinality": 
    "field": "sect.keyword"
   
  
 

Java:

@Test
public void cardinalityQueryTest() throws IOException 
 // 创建某个索引的request
    SearchRequest searchRequest = new SearchRequest("person");
    // 查询条件
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    // 聚合查询
    AggregationBuilder aggBuilder = AggregationBuilders.cardinality("sect_count").field("sect.keyword");
    searchSourceBuilder.size(0);
    // 将聚合查询构建到查询条件中
    searchSourceBuilder.aggregation(aggBuilder);
    System.out.println("searchSourceBuilder----->" + searchSourceBuilder);

    searchRequest.source(searchSourceBuilder);
    // 执行查询,获取结果
    SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
    System.out.println(JSONObject.toJSON(response));

分组聚合

单条件分组

「案例:查询每个门派的人数」

「SQL:」

select sect,count(id) from mytest.persons group by sect;

「ES:」


 "size": 0,
 "aggregations": 
  "sect_count": 
   "terms": 
    "field": "sect.keyword",
    "size": 10,
    "min_doc_count": 1,
    "shard_min_doc_count": 0,
    "show_term_doc_count_error": false,
    "order": [
     
      "_count": "desc"
     ,
     
      "_key": "asc"
     
    ]
   
  
 

「Java:」

SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.size(0);
// 按sect分组
AggregationBuilder aggBuilder = AggregationBuilders.terms("sect_count").field("sect.keyword");
searchSourceBuilder.aggregation(aggBuilder);

多条件分组

「案例:查询每个门派各有多少个男性和女性」

「SQL:」

select sect,sex,count(id) from mytest.persons group by sect,sex;

「ES:」


 "aggregations": 
  "sect_count": 
   "terms": 
    "field": "sect.keyword",
    "size": 10
   ,
   "aggregations": 
    "sex_count": 
     "terms": 
      "field": "sex.keyword",
      "size": 10
     
    
   
  
 

过滤聚合

前面所有聚合的例子请求都省略了 query ,整个请求只不过是一个聚合。这意味着我们对全部数据进行了聚合,但现实应用中,我们常常对特定范围的数据进行聚合,例如下例。

「案例:查询明教中的最大年龄。」 这涉及到聚合与条件查询一起使用。

「SQL:」

select max(age) from mytest.persons where sect = '明教';

「ES:」

GET /person/_search

 "query": 
  "term": 
   "sect.keyword": 
    "value": "明教",
    "boost": 1.0
   
  
 ,
 "aggregations": 
  "max_age": 
   "max": 
    "field": "age"
   
  
 

「Java:」

SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 聚合查询条件
AggregationBuilder maxBuilder = AggregationBuilders.max("max_age").field("age");
// 等值查询
searchSourceBuilder.query(QueryBuilders.termQuery("sect.keyword", "明教"));
searchSourceBuilder.aggregation(maxBuilder);

另外还有一些更复杂的查询例子。

「案例:查询0-20,21-40,41-60,61以上的各有多少人。」

【SQL:】

select 
 sum(case when age<=20 then 1 else 0 end) ageGroup1,
 sum(case when age >20 and age <=40 then 1 else 0 end) ageGroup2,
 sum(case when age >40 and age <=60 then 1 else 0 end) ageGroup3,
 sum(case when age >60 and age <=200 then 1 else 0 end) ageGroup4
from 
 mytest.persons;

【ES:】


 "size": 0,
 "aggregations": 
  "age_avg": 
   "range": 
    "field": "age",
    "ranges": [
     
      "from": 0.0,
      "to": 20.0
     ,
     
      "from": 21.0,
      "to": 40.0
     ,
     
      "from": 41.0,
      "to": 60.0
     ,
     
      "from": 61.0,
      "to": 200.0
     
    ],
    "keyed": false
   
  
 

【Java:】

查询结果:

"aggregations" : 
  "age_avg" : 
    "buckets" : [
      
        "key" : "0.0-20.0",
        "from" : 0.0,
        "to" : 20.0,
        "doc_count" : 3
      ,
      
        "key" : "21.0-40.0",
        "from" : 21.0,
        "to" : 40.0,
        "doc_count" : 13
      ,
      
        "key" : "41.0-60.0",
        "from" : 41.0,
        "to" : 60.0,
        "doc_count" : 4
      ,
      
        "key" : "61.0-200.0",
        "from" : 61.0,
        "to" : 200.0,
        "doc_count" : 1
      
    ]
  

以上是关于ElasticSearch 在Java中的各种实现的主要内容,如果未能解决你的问题,请参考以下文章

ElasticSearch进阶:一文全览各种ES查询在Java中的实现

ElasticSearch进阶:一文全览各种ES查询在Java中的实现

Elasticsearch分组--- java api 实现

java优雅的使用elasticsearch

Elasticsearch painless脚本中使用java自定义类函数

第08章 ElasticSearch Java API