Java操作elasticSearch复杂查询以及解析数据
Posted 溜达的大象
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java操作elasticSearch复杂查询以及解析数据相关的知识,希望对你有一定的参考价值。
Java操作elasticSearch复杂查询以及解析数据
es的银行测试库,看一个Kibana操作 然后用java检索解析这个数据
#聚合搜索 address 中包含 mill 的所有人的年龄分布以及平均薪资
GET bank/_search
{
"query":{
"match": {
"address": "mill"
}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 10
}
},
"balanceAvg":{
"avg":{
"field": "balance"
}
}
},
"size": 0
}
分解实现:
拆解操作数据
#聚合搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄
GET bank/_search
{
“query”:{ “match”: { “address”: “mill” }
},
“aggs”: { “ageAgg”: { “terms”: { “field”: “age”, “size”: 10 } },“balanceAvg”:{ “avg”:{ “field”: “balance” } } }, “size”: 0 }
构造一个查询器 指向索引
SearchRequest searchRequest = new SearchRequest();
//指定索引
searchRequest.indices("bank");
封装查询条件器
//指定DSL 检索条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//构造检索条件
searchSourceBuilder.query(QueryBuilders.matchQuery("address","mill"));
//按照年龄只分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
searchSourceBuilder.aggregation(ageAgg);
//计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("blance");
searchSourceBuilder.aggregation(balanceAvg);
//打印检索条件 打印结果与Kibana核对
System.out.println("检索条件:"+searchSourceBuilder);
检索条件:{"query":{"match":{"address":{"query":"mill","operator":"OR","prefix_length":0,"max_expansions":50,"fuzzy_transpositions":true,"lenient":false,"zero_terms_query":"NONE","auto_generate_synonyms_phrase_query":true,"boost":1.0}}},"aggregations":{"ageAgg":{"terms":{"field":"age","size":10,"min_doc_count":1,"shard_min_doc_count":0,"show_term_doc_count_error":false,"order":[{"_count":"desc"},{"_key":"asc"}]}},"balanceAvg":{"avg":{"field":"blance"}}}}
封装的条件器置入查询器
searchRequest.source(searchSourceBuilder);
容器中的client调用查询:
//执行检索
SearchResponse search = client.search(searchRequest, GuilimallElasticSearchConfig.COMMON_OPTIONS);
解析查询结果
System.out.println(search.toString());
// Map map = JSON.parseObject(search.toString(), Map.class);
//分析结果 查询结构
SearchHits hits = search.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit: searchHits){
// hit.getIndex();
// hit.getId();
String sourceAsString = hit.getSourceAsString();
Accout accout = JSON.parseObject(sourceAsString, Accout.class);
System.out.println(accout.toString());
}
//获取检索的分析信息
Aggregations aggregations = search.getAggregations();
// for (Aggregation aggregation : aggregations.asList()) {
// System.out.println("当前聚合名字:"+aggregation.getName());
// }
//分类聚合
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString + "人数:"+bucket.getDocCount());
}
//平局值
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资"+ balanceAvg1.getValue());
{"took":1,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":{"value":4,"relation":"eq"},"max_score":5.4032025,"hits":[{"_index":"bank","_type":"account","_id":"970","_score":5.4032025,"_source":{"account_number":970,"balance":19648,"firstname":"Forbes","lastname":"Wallace","age":28,"gender":"M","address":"990 Mill Road","employer":"Pheast","email":"forbeswallace@pheast.com","city":"Lopezo","state":"AK"}},{"_index":"bank","_type":"account","_id":"136","_score":5.4032025,"_source":{"account_number":136,"balance":45801,"firstname":"Winnie","lastname":"Holland","age":38,"gender":"M","address":"198 Mill Lane","employer":"Neteria","email":"winnieholland@neteria.com","city":"Urie","state":"IL"}},{"_index":"bank","_type":"account","_id":"345","_score":5.4032025,"_source":{"account_number":345,"balance":9812,"firstname":"Parker","lastname":"Hines","age":38,"gender":"M","address":"715 Mill Avenue","employer":"Baluba","email":"parkerhines@baluba.com","city":"Blackgum","state":"KY"}},{"_index":"bank","_type":"account","_id":"472","_score":5.4032025,"_source":{"account_number":472,"balance":25571,"firstname":"Lee","lastname":"Long","age":32,"gender":"F","address":"288 Mill Street","employer":"Comverges","email":"leelong@comverges.com","city":"Movico","state":"MT"}}]},"aggregations":{"lterms#ageAgg":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":38,"doc_count":2},{"key":28,"doc_count":1},{"key":32,"doc_count":1}]},"avg#balanceAvg":{"value":null}}}
GulimallSearchApplicationTests.Accout(account_number=970, balance=19648, firstname=Forbes, lastname=Wallace, age=28, gender=M, address=990 Mill Road, employer=Pheast, email=forbeswallace@pheast.com, city=Lopezo, state=AK)
GulimallSearchApplicationTests.Accout(account_number=136, balance=45801, firstname=Winnie, lastname=Holland, age=38, gender=M, address=198 Mill Lane, employer=Neteria, email=winnieholland@neteria.com, city=Urie, state=IL)
GulimallSearchApplicationTests.Accout(account_number=345, balance=9812, firstname=Parker, lastname=Hines, age=38, gender=M, address=715 Mill Avenue, employer=Baluba, email=parkerhines@baluba.com, city=Blackgum, state=KY)
GulimallSearchApplicationTests.Accout(account_number=472, balance=25571, firstname=Lee, lastname=Long, age=32, gender=F, address=288 Mill Street, employer=Comverges, email=leelong@comverges.com, city=Movico, state=MT)
年龄:38人数:2
年龄:28人数:1
年龄:32人数:1
平均薪资Infinity
打印逐条记录时,可以把结构封装成一个model 借助一下:json.cn
完整操作:
@ToString
@Data
static class Accout {
private int account_number;
private int balance;
private String firstname;
private String lastname;
private int age;
private String gender;
private String address;
private String employer;
private String email;
private String city;
private String state;
}
@Test
public void searchData() throws IOException {
SearchRequest searchRequest = new SearchRequest();
//指定索引
searchRequest.indices("bank");
//指定DSL 检索条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//构造检索条件
/**
#聚合搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄
GET bank/_search
{
"query":{ "match": { "address": "mill" }
},
"aggs": { "ageAgg": { "terms": { "field": "age", "size": 10 } },
"balanceAvg":{ "avg":{ "field": "balance" } } }, "size": 0 }
*/
// searchSourceBuilder.aggregation();
// searchSourceBuilder.from();
// searchSourceBuilder.size();
searchSourceBuilder.query(QueryBuilders.matchQuery("address","mill"));
//按照年龄只分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
searchSourceBuilder.aggregation(ageAgg);
//计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("blance");
searchSourceBuilder.aggregation(balanceAvg);
//打印检索条件
System.out.println("检索条件:"+searchSourceBuilder);
searchRequest.source(searchSourceBuilder);
//执行检索
SearchResponse search = client.search(searchRequest, GuilimallElasticSearchConfig.COMMON_OPTIONS);
//分析结果
// searchRequest.
System.out.println(search.toString());
// Map map = JSON.parseObject(search.toString(), Map.class);
//分析结果 查询结构
SearchHits hits = search.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit: searchHits){
// hit.getIndex();
// hit.getId();
String sourceAsString = hit.getSourceAsString();
Accout accout = JSON.parseObject(sourceAsString, Accout.class);
System.out.println(accout.toString());
}
//获取检索的分析信息
Aggregations aggregations = search.getAggregations();
// for (Aggregation aggregation : aggregations.asList()) {
// System.out.println("当前聚合名字:"+aggregation.getName());
// }
//分类聚合
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString + "人数:"+bucket.getDocCount());
}
//平局值
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资"+ balanceAvg1.getValue());
}
以上是关于Java操作elasticSearch复杂查询以及解析数据的主要内容,如果未能解决你的问题,请参考以下文章
java spring boot中elasticsearch 自定义查询