人工智能学习路线

Posted AI每天一点点

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人工智能学习路线相关的知识,希望对你有一定的参考价值。

相关资料下载 

 加助教小姐姐的威信即可免费获取:

第一、人工智能必备数学基础

数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上。 

一、数据分析

1)常数e
2)导数 
3)梯度 
4)Taylor

5)gini系数
6)信息熵与组合数
7)梯度下降
8)牛顿法

二、概率论

1)微积分与逼近论
2)极限、微分、积分基本概念 
3)利用逼近的思想理解微分,利用积分的方式理解概率
4)概率论基础
5)古典模型

6)常见概率分布
7)大数定理和中心极限定理 
8)协方差(矩阵)和相关系数 
9)最大似然估计和最大后验估计

 三、线性代数及矩阵

1)线性空间及线性变换 
2)矩阵的基本概念 
3)状态转移矩阵 
4)特征向量 
5)矩阵的相关乘法

6)矩阵的QR分解 
7)对称矩阵、正交矩阵、正定矩阵 
8)矩阵的SVD分解 
9)矩阵的求导 
10)矩阵映射/投影

四、凸优化

1)凸优化基本概念 
2)凸集 
3)凸函数

4)凸优化问题标准形式 
5)凸优化之Lagerange对偶化 
6)凸优化之牛顿法、梯度下降法求解

 第二、Python应用

一、容器

1)列表:list
2)元组:tuple
3)字典: dict
4)数组: Array

5)切片
6)列表推导式
7)浅拷贝和深拷贝

 二、函数

1)lambda表达式
2)递归函数及尾递归优化

3)常用内置函数/高阶函数 
4)项目案例:约瑟夫环问题

 三、常用库

1)时间库
2)并发库 
3)科学计算库(Numpy)

4)Matplotlib可视化绘图库 
5)锁和线程
6)多线程编程

数据分析处理库-Pandas、可视化库-Matplotlib、可视化库-Seaborn等学习资料都可找我领取

第三、机器学习 (实用)

机器学习人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。 

一、机器学习

1)机器学习概述 

二、监督学习

1)逻辑回归 
2)softmax分类 
3)条件随机场 
4)支持向量机svm

5)决策树 
6)随机森林 
7)GBDT 
8)集成学习

 三、非监督学习

1)高斯混合模型 
2)聚类 
3)PCA

4)密度估计

5)LSI 
6)LDA 
7)双聚类

 四、数据处理与模型调优

1)特征提取
2)数据预处理
3)数据降维

4)模型参数调优
5)模型持久化
6)模型可视化

推荐文章:机器学习算法 ,小编有全套机器学习视频资料的呀

 第四、深度学习

人工智能时代已经到来,AlohaGO的击败李世石成为了围棋界的神话,让许多人震惊不已。那么AlphaGo是怎么产出的呢?它是源自于人工智能的深度学习。

 深度学习是一种机器学习的方法,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层(神经网络)对数据进行高层抽象的算法。深度学习可以理解为神经网络的发展,神经网络是对人脑或生物神经网络基本特征进行抽象和建模,可以从外界环境中学习,并以与生物类似的交互方式适应环境。 

 1)TensorFlow基本应用 
2)BP神经网络
3)深度学习概述
4)卷积神经网络(CNN) 
5)图像分类(vgg,resnet)
6)目标检测(rcnn,fast-rcnn,faster-rcnn,ssd)
7)递归神经网络(RNN)
8)lstm,bi-lstm,多层LSTM

9)无监督学习之AutoEncoder自动编码器
10)Seq2Seq
11)Seq2Seq with Attension
12)生成对抗网络
13)irgan
14)finetune及迁移学习
15)孪生网络
16)小样本学习

第五、自然语言处理(NLP)

语言是人类区别其他动物的本质特性。在所有生物中,只有人类才具有语言能力。人类的多种智能都与语言有着密切的关系。人类的逻辑思维以语言为形式,人类的绝大部分知识也是以语言文字的形式记载和流传下来的。因而,它也是人工智能的一个重要,甚至核心部分。 

1)词(分词,词性标注)代码实战 
2)词(深度学习之词向量,字向量)代码实战 
3)词(深度学习之实体识别和关系抽取)代码实战 
4)词(关键词提取,无用词过滤)代码实战

5)句(句法分析,语义分析)代码实战
6)句(自然语言理解,一阶逻辑)代码实战
7)句(深度学习之文本相似度)代码实战

第六、图像处理

图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。可以说是包括了PS。

图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。

图像处理技术的一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。 常见的系统有康耐视系统、图智能系统等,目前是正在逐渐兴起的技术。
 

 一、图像基础:图像读,写,保存,画图(线,圆,多边形,添加文字)

二、图像操作及算数运算:图像像素读取,算数运算,ROI区域提取

三、图像颜色空间运算:图像颜色空间相互转化

四、图像几何变换:平移,旋转,仿射变换,透视变换等

五、图像形态学:腐蚀,膨胀,开/闭运算等

六、图像轮廓:长宽,面积,周长,外接圆,方向,平均颜色,层次轮廓等

七、图像统计学:图像直方图

八、图像滤波:高斯滤波,均值滤波,双边滤波,拉普拉斯滤波等


 小编吐血整理了有关Python人工智能的资料,有图像处理opencv\\自然语言处理、机器学习、数学基础等资源库,代码、PPT、书籍也有,想学习人工智能或者转行到高薪资行业的,大学生也非常实用,无任何套路免费提供~

扫码+vx领取,也可以咨询学习问题

以上是关于人工智能学习路线的主要内容,如果未能解决你的问题,请参考以下文章

唐宇迪-人工智能学习路线(下篇)

2022年人工智能学习路线图,清楚明确

Python人工智能完整学习路线

零基础学习大数据人工智能,学习路线篇!

唐宇迪-人工智能学习路线(上篇)

未来智能 Python最新学习路线图