直播:如何通过 ELK 实战实现《长津湖》影评可视化?

Posted 铭毅天下

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了直播:如何通过 ELK 实战实现《长津湖》影评可视化?相关的知识,希望对你有一定的参考价值。

1、Elastic Stack 全局认知

ELK 是 Elasticsearch、Logstash、Kibana 技术栈的简称。Elastic 官方已统称为:Elastic Stack,翻译成:Elastic 技术栈体系。

单独使用 Elasticsearch 能应对很多业务场景,包含但不限于:

  • 全文检索场景。

  • 日志分析场景。

  • 大数据可视化商业 BI 场景。

但,还不够。Elasticsearch 擅长数据存储和检索。以下两个问题问题还搞不定?

  • 数据如何导入 Elasticsearch?

  • 如何对数据进行可视化分析?

Logstash、Beats 就是数据接入的引流器。

其中,Logstash 以其精简的“三段论”回答了数据流的三个经典问题:

  • input:从哪里来?

  • output:到哪里去?

  • filter:中间做什么处理?

可视化部分就交给了 Kibana,这个貌似运维工程师开发的工具在可视化方面大放异彩。

  • 饼图

  • 折线图

  • 方框图

  • 坐标打点图

  • ......

等等基础图形一应俱全。

这些技术体系听是都听过,不见得实践环节都用过。

2、ELK 可视化分析文章发布之后

ELK 可视化分析热血电影长津湖15万+影评》文章发布之后,关注度比较高,读者反馈如下几个问题:

  • 全程没有用python采集数据,都是ES完成的不?

  • Kibana 怎么展示词云的?

  • 脚本与配置能写个文档分享下不?

  • 想学习,有没有源码地址?

文字毕竟是干巴巴的,不能活灵活现;大家的时间宝贵,很多源码的长文反而受众少。

介于此,非常有必要通过直播实操分享一下具体实现步骤。

3、 本次直播分享目标及大纲

3.1 课程目标

通过一个小项目实战,打通你对 ELK 的全景认知。

3.2 适合群体

  • Elastic Stack 开发、运维工程师

  • 准备参加 Elastic 认证考试的工程师

  • Elastic Stack 技术发烧友

  • 对数据可视化感兴趣的Elastic 爱好者

  • 在校大数据专业的本科生或研究生

3.3 习得干货

通过本次分享,你能习得:

  • Elasticsearch 数据预处理的强大。

  • Elasticsearch 数据建模的重要性。

  • Kibana 可视化的便捷和威力。

  • 全方位认识ELK(Elasticsearch、Logstash、kibana)。

3.4 细分内容

3.4.1、架构设计

  • 数据从哪里来?数据到哪里去?

  • 以终为始,可视化倒逼数据。

3.4.2、数据预处理

  • 杂乱无章数据如何清洗?

  • Elasticsearch 预处理能做啥?

  • 如何不写或者少写代码实现新增字段和数据?

3.4.3、数据建模

  • 数据建模的作用。

  • 建模注意事项。

  • 建模遇到的坑?

3.4.4、数据同步

  • input。

  • filter。

  • output。

3.4.5、数据存储与检索

为可视化打下数据基础。

3.4.6、多维数据可视化

  • 强大的 kibana 如何用起来?

  • 词云图、饼图、走势图、地理位置坐标分布图如何使用?

3.5 报名方式

扫码预约免费直播课

4、小结 

实战中强化理论,理论中贯穿实战。

从实战中来,到实战中去!

来吧,我们一起实战一把!

以上是关于直播:如何通过 ELK 实战实现《长津湖》影评可视化?的主要内容,如果未能解决你的问题,请参考以下文章

实战!《长津湖》为什么这么火爆?我用 Python 来分析猫眼影评

「长津湖」 为什么这么火爆?用Python分析了5w+影评

Python爬虫——刚学会爬虫,第一次实践就爬取了 《长津湖》影评数据

Python爬虫——刚学会爬虫,第一次实践就爬取了 《长津湖》影评数据

Python爬虫——刚学会爬虫,第一次实践就爬取了 《长津湖》影评数据

《长津湖》《我和我的父辈》,Python国庆档影评分析