L - Two Ants Gym - 102823L

Posted Jozky86

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了L - Two Ants Gym - 102823L相关的知识,希望对你有一定的参考价值。

L - Two Ants Gym - 102823L

题意:

有两个线段A,B,两个线段不会超过一个公共点,
你站在线段B上,整个平面你看不到的区域的面积(如图中S所在区域)

题解:

计算几何,恶心题。调了一个小时还是不对,吐了
基本思路:很明显S所在区域是一个三角形,其中两点是线段w的两端,那我们求出第三个点即可
基本思路是正确的,但是本题要处理的细节很多:
如图,此时面积为inf

如图,此时面积为inf

如图,此时面积为0.00

如图,此时情况为inf

此时面积为红色区域

情况非常多,总结下:
线段W退化成点,答案为0
线段B退化成点,答案为inf
两线段规范相交,答案为0
两线段非规范相交:
若有共线答案为0。
否则即交点在端点,答案为inf
两线段不相交:
B线段的两点在W线段的两侧,答案为0.
否则:
两个线段端点彼此之间的连线,若有交点,判断其相对位置,如果相对于W线段不与黑色线段同侧,则计算该点与W线段构成的面积即是答案。
若没有交点(平行),或者交点都在B线段同侧,则答案为inf.

代码:

AC代码,代码网上的,真的改不动了

#include<bits/stdc++.h>
using namespace std;

// `计算几何模板`
const double eps = 1e-14;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
//`Compares a double to zero`
int sgn(double x)
{
    if (fabs(x) < eps) { return 0; }
    else { return x < 0 ? -1 : 1; }
}
//square of a double
inline double sqr(double x) {return x * x;}
struct Point {
    double x, y;
    Point() {}
    Point(double _x, double _y)
    {
        x = _x;
        y = _y;
    }
    void input()
    {
        scanf("%lf%lf", &x, &y);
    }
    void output()
    {
        printf("%.2f %.2f\\n", x, y);
    }
    bool operator == (Point b)const
    {
        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
    }
    bool operator < (Point b)const
    {
        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x, y - b.y);
    }
    //叉积
    double operator ^(const Point &b)const
    {
        return x * b.y - y * b.x;
    }
    //点积
    double operator *(const Point &b)const
    {
        return x * b.x + y * b.y;
    }
    //返回长度
    double len()
    {
        return hypot(x, y); //库函数
    }
    //返回长度的平方
    double len2()
    {
        return x * x + y * y;
    }
    //返回两点的距离
    double distance(Point p)
    {
        return hypot(x - p.x, y - p.y);
    }
    Point operator +(const Point &b)const
    {
        return Point(x + b.x, y + b.y);
    }
    Point operator *(const double &k)const
    {
        return Point(x * k, y * k);
    }
    Point operator /(const double &k)const
    {
        return Point(x / k, y / k);
    }
    //`计算pa  和  pb 的夹角`
    //`就是求这个点看a,b 所成的夹角`
    //`测试 LightOJ1203`
    double rad(Point a, Point b)
    {
        Point p = *this;
        return fabs(atan2( fabs((a - p) ^ (b - p)), (a - p) * (b - p) ));
    }
    //`化为长度为r的向量`
    Point trunc(double r)
    {
        double l = len();
        if (!sgn(l)) { return *this; }
        r /= l;
        return Point(x * r, y * r);
    }
    //`逆时针旋转90度`
    Point rotleft()
    {
        return Point(-y, x);
    }
    //`顺时针旋转90度`
    Point rotright()
    {
        return Point(y, -x);
    }
    //`绕着p点逆时针旋转angle`
    Point rotate(Point p, double angle)
    {
        Point v = (*this) - p;
        double c = cos(angle), s = sin(angle);
        return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
    }
};
struct Line {
    Point s, e;
    Line() {}
    Line(Point _s, Point _e)
    {
        s = _s;
        e = _e;
    }
    bool operator ==(Line v)
    {
        return (s == v.s) && (e == v.e);
    }
    //`根据一个点和倾斜角angle确定直线,0<=angle<pi`
    Line(Point p, double angle)
    {
        s = p;
        if (sgn(angle - pi / 2) == 0) {
            e = (s + Point(0, 1));
        } else {
            e = (s + Point(1, tan(angle)));
        }
    }
    //ax+by+c=0
    Line(double a, double b, double c)
    {
        if (sgn(a) == 0) {
            s = Point(0, -c / b);
            e = Point(1, -c / b);
        } else if (sgn(b) == 0) {
            s = Point(-c / a, 0);
            e = Point(-c / a, 1);
        } else {
            s = Point(0, -c / b);
            e = Point(1, (-c - a) / b);
        }
    }
    void input()
    {
        s.input();
        e.input();
    }
    void adjust()
    {
        if (e < s) { swap(s, e); }
    }
    //求线段长度
    double length()
    {
        return s.distance(e);
    }
    //`返回直线倾斜角 0<=angle<pi`
    double angle()
    {
        double k = atan2(e.y - s.y, e.x - s.x);
        if (sgn(k) < 0) { k += pi; }
        if (sgn(k - pi) == 0) { k -= pi; }
        return k;
    }
    //`点和直线关系`
    //`1  在左侧`
    //`2  在右侧`
    //`3  在直线上`
    int relation(Point p)
    {
        int c = sgn((p - s) ^ (e - s));
        if (c < 0) { return 1; }
        else if (c > 0) { return 2; }
        else { return 3; }
    }
    // 点在线段上的判断
    bool pointonseg(Point p)
    {
        return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;
    }
    //`两向量平行(对应直线平行或重合)`
    bool parallel(Line v)
    {
        return sgn((e - s) ^ (v.e-v.s)) == 0;
    }
    //`两线段相交判断`
    //`2 规范相交`
    //`1 非规范相交`
    //`0 不相交`
    int segcrossseg(Line v)
    {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e-s));
        int d3 = sgn((v.e-v.s) ^ (s - v.s));
        int d4 = sgn((v.e-v.s) ^ (e - v.s));
        if ( (d1 ^ d2) == -2 && (d3 ^ d4) == -2 ) { return 2; }
        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
               (d2 == 0 && sgn((v.e-s) * (v.e-e)) <= 0) ||
               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
    }
    //`直线和线段相交判断`
    //`-*this line   -v seg`
    //`2 规范相交`
    //`1 非规范相交`
    //`0 不相交`
    int linecrossseg(Line v)
    {
        int d1 = sgn((e - s) ^ (v.s - s));
        int d2 = sgn((e - s) ^ (v.e-s));
        if ((d1 ^ d2) == -2) { return 2; }
        return (d1 == 0 || d2 == 0);
    }
    //`两直线关系`
    //`0 平行`
    //`1 重合`
    //`2 相交`
    int linecrossline(Line v)
    {
        if ((*this).parallel(v)) {
            return v.relation(s) == 3;
        }
        return 2;
    }
    //`求两直线的交点`
    //`要保证两直线不平行或重合`
    Point crosspoint(Line v)
    {
        double a1 = (v.e-v.s) ^ (s - v.s);
        double a2 = (v.e-v.s) ^ (e - v.s);
        return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - a1));
    }
    //点到直线的距离
    double dispointtoline(Point p)
    {
        return fabs((p - s) ^ (e - s)) / length();
    }
    //点到线段的距离
    double dispointtoseg(Point p)
    {
        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0) {
            return min(p.distance(s), p.distance(e));
        }
        return dispointtoline(p);
    }
    //`返回线段到线段的距离`
    //`前提是两线段不相交,相交距离就是0了`
    double dissegtoseg(Line v)
    {
        return min(min(dispointtoseg(v.s), dispointtoseg(v.e)), min(v.dispointtoseg(s), v.dispointtoseg(e)));
    }
    //`返回点p在直线上的投影`
    Point lineprog(Point p)
    {
        Point v = e - s;
        return s + ( (v * (v * (p - s))) / (v.len2()) );
    }
    //`返回点p关于直线的对称点`
    Point symmetrypoint(Point p)
    {
        Point q = lineprog(p);
        return Point(2 * q.x - p.x, 2 * q.y - p.y);
    }
};

int main()
{
    int T;
    cin >> T;
    Line w, b;
    int cas = 0;
    Line l1, l2, l3, l4;
    Point cp;
    int sg;
    double ans;
    while (T--) {
        ++cas;
        w.input();
        b.input();
        if (w.s == w.e) {
            printf("Case %d: 0.000\\n", cas);
        } else if (b.s == b.e) {
            printf("Case %d: inf\\n"L - Two Ants Gym - 102823L

gym103117J. Ants

Gym 101201F Illumination (Two-Sat)

POJ 1852 Ants

加强赛E - Ants POJ - 1852

[CSP-S模拟测试]:ants(回滚莫队)