正点原子FPGA连载第九章按键控制LED灯实验 -摘自正点原子新起点之FPGA开发指南_V2.1
Posted 正点原子
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了正点原子FPGA连载第九章按键控制LED灯实验 -摘自正点原子新起点之FPGA开发指南_V2.1相关的知识,希望对你有一定的参考价值。
1)实验平台:正点原子新起点V2开发板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609758951113
2)全套实验源码+手册+视频下载地址:http://www.openedv.com/thread-300792-1-1.html
3)对正点原子FPGA感兴趣的同学可以加群讨论:994244016
4)关注正点原子公众号,获取最新资料更新
第九章按键控制LED灯实验
按键是常用的一种控制器件。生活中我们可以见到各种形式的按键,由于其结构简单,成本低廉等特点,在家电、数码产品、玩具等方面有广泛的应用。本章我们将介绍如何使用按键控制多个LED的亮灭。
本章包括以下几个部分
99.1简介
9.2实验任务
9.3硬件设计
9.4程序设计
9.5下载验证
9.1简介
按键开关是一种电子开关,属于电子元器件类。我们的开发板上有两种按键开关:第一种是本实验所使用的轻触式按键开关(如图 9.1.1),简称轻触开关。使用时以向开关的操作方向施加压力使内部电路闭合接通,当撤销压力时开关断开,其内部结构是靠金属弹片受力后发生形变来实现通断的;第二种是自锁按键(如图 9.1.2),自锁按键第一次按下后保持接通,即自锁,第二次按下后,开关断开,同时开关按钮弹出来,开发板上的电源键就是这种开关。
图 9.1.1 轻触式按键
图 9.1.2 自锁式按键
9.2实验任务
使用新起点开发板上的四个按键控制四个LED灯。不同按键按下时,四个LED灯显示不同效果。
9.3硬件设计
如图 9.3.1所示,本实验使用四个按键开关控制四个LED灯。
图 9.3.1 按键电路原理图
如上图所示,开发板上的5个按键未按下时,输出高电平,按下后,输出低电平。
本实验中,系统时钟、复位按键、按键和LED灯的管脚如下表所示。
表 9.3.1 触摸按键控制LED管脚分配图
对应的TCL约束文件如下:
set_location_assignment PIN_M2 -to sys_clk
set_location_assignment PIN_M1 -to sys_rst_n
set_location_assignment PIN_E16 -to key[0]
set_location_assignment PIN_E15 -to key[1]
set_location_assignment PIN_M15 -to key[2]
set_location_assignment PIN_M16 -to key[3]
set_location_assignment PIN_D11 -to led[0]
set_location_assignment PIN_C11 -to led[1]
set_location_assignment PIN_E10 -to led[2]
set_location_assignment PIN_F9 -to led[3]
9.4程序设计
我们程序设计最终实现的效果为:无按键按下时,LED灯全灭;按键1按下时,LED灯显示自右向左的流水效果;按键2按下时,LED灯显示自左向右的流水效果;按键3按下时,四个LED灯同时闪烁;按键4按下时,LED灯全亮。
LED在流水效果和闪烁效果在时间间隔均为0.2秒,因此需要在程序中定义一个0.2s的计数器,即每隔0.2s,状态计数器加一。根据当前按键的状态选择不同的显示模式,不同的显示模式下四个led灯的亮灭随状态计数器的值改变,从而呈现出不同的显示效果。
图 9.4.1 系统框图
按键控制led模块的代码如下所示:
1 module key_led(
2 input sys_clk , //50Mhz系统时钟
3 input sys_rst_n, //系统复位,低有效
4 input [3:0] key, //按键输入信号
5 output reg [3:0] led //LED输出信号
6 );
7
8 //reg define
9 reg [23:0] cnt;
10 reg [1:0] led_control;
11
12 //用于计数0.2s的计数器
13 always @ (posedge sys_clk or negedge sys_rst_n) begin
14 if(!sys_rst_n)
15 cnt<=24'd9_999_999;
16 else if(cnt<24'd9_999_999)
17 cnt<=cnt+1;
18 else
19 cnt<=0;
20 end
21
22 //用于led灯状态的选择
23 always @(posedge sys_clk or negedge sys_rst_n) begin
24 if (!sys_rst_n)
25 led_control <= 2'b00;
26 else if(cnt == 24'd9_999_999)
27 led_control <= led_control + 1'b1;
28 else
29 led_control <= led_control;
30 end
31
32 //识别按键,切换显示模式
33 always @(posedge sys_clk or negedge sys_rst_n) begin
34 if(!sys_rst_n) begin
35 led<=4'b 0000;
36 end
37 else if(key[0]== 0) //按键1按下时,从右向左的流水灯效果
38 case (led_control)
39 2'b00 : led<=4'b1000;
40 2'b01 : led<=4'b0100;
41 2'b10 : led<=4'b0010;
42 2'b11 : led<=4'b0001;
43 default : led<=4'b0000;
44 endcase
45 else if (key[1]==0) //按键2按下时,从左向右的流水灯效果
46 case (led_control)
47 2'b00 : led<=4'b0001;
48 2'b01 : led<=4'b0010;
49 2'b10 : led<=4'b0100;
50 2'b11 : led<=4'b1000;
51 default : led<=4'b0000;
52 endcase
53 else if (key[2]==0) //按键3按下时,LED闪烁
54 case (led_control)
55 2'b00 : led<=4'b1111;
56 2'b01 : led<=4'b0000;
57 2'b10 : led<=4'b1111;
58 2'b11 : led<=4'b0000;
59 default : led<=4'b0000;
60 endcase
61 else if (key[3]==0) //按键4按下时,LED全亮
62 led=4'b1111;
63 else
64 led<=4'b0000; //无按键按下时,LED熄灭
65 end
66
67 endmodule
代码主要分为三个部分,第12至20行对系统时钟计数,当计数时间达0.2s时,计数器清零,同时使led_control在四个状态(00,01,10,11)内依次变化。第33至65行利用case语句实现对按键状态的检测,当不同的按键按下时,led随着led_control的变化,被赋予不同的值。
大家可以发现,本次实验和流水灯实验计数时间都是0.2s,本次实验的计数器最大可以计数到9_999_999,而流水灯实验中计数器的值最大可以计数到10_000_000。事实上,这两个实验计数器都是从0开始计数的,本次实验从0计数到9_999_999,需要10_000_000个时钟周期,而系统时钟为20ns,所以计数的时间为0.2s,而流水灯实验从0计数到10_000_000需要10_000_001个时钟周期,因此其计数时间实际上比0.2s要多出20ns。
为了验证我们的程序,我们在modelsim内对代码进行仿真。
Testbench模块代码如下:
1 `timescale 1 ns/ 1 ns
2 module tb_key_led();
3
4 parameter T = 20;
5
6 reg [3:0] key ;
7 reg sys_clk ;
8 reg sys_rst_n;
9
10 wire [3:0] led;
11
12 initial begin
13 key <=4'b1111;//按键初始状态为全断开
14 sys_clk <=1'b0; //初始时钟为低电平
15 sys_rst_n <=1'b0; //复位信号初始为低电平
16 #T sys_rst_n <=1'b1; //一个时钟周期后复位信号拉高
17
18 #600_000_020 key[0] <=0; //0.6s时按下按键1
19 #800_000_000 key[0] <=1;
20 key[1] <=0; //0.8s后松开按键1,按下按键2
21 #800_000_000 key[1] <=1;
22 key[2] <=0; //0.8s后松开按键2,按下按键3
23 #800_000_000 key[2] <=1;
24 key[3] <=0; //0.8s后松开按键3,按下按键4
25 #800_000_000 key[3] <=1; //0.8s后松开按键4
26
27 end
28
29 always # (T/2) sys_clk <= ~sys_clk;
30 key_led u_key_led(
31 .sys_clk(sys_clk),
32 .sys_rst_n(sys_rst_n),
33 .key(key),
34 .led(led)
35 );
36
37 endmodule
图 9.4.2 仿真图像
观察代码,结合波形分析可知。14至16行代码为对时钟信号、复位信号、按键信号赋初始值,默认为按键全断开。第0.6s时按下按键key0(kye[0]由高电平变为低电平),可观察到led3至led0依次点亮,呈现自右向左的流水效果;按键key1断开的同时按下按键key2,可观察到led0至led3依次点亮,呈现自左向右的流水效果;按键key2断开的同时按下按键key3s,可观察到led0至led3呈现闪烁效果;按键key3断开的同时按下按键key4,可观察到led0至led3保持全亮。
9.5下载验证
首先我们打开按键控制LED工程,在工程所在的路径下打开key_led/par文件夹,在里面找到“key_led.qpf”并双击打开。注意工程所在的路径名只能由字母、数字以及下划线组成,不能出现中文、空格以及特殊字符等。key_led工程打开后如图 9.5.1所示。
图 9.5.1 打开工程
工程打开后通过点击工具栏中的“Programmer”图标(图中红框位置)打开下载界面。
下载界面如图 9.5.2所示,查看图中是否已经加载下载文件(sof文件)。如果没有,则需要通过点击“Add File”按钮添加流水灯工程中key_led/par/output_files目录下的“key_led.sof”文件。
图 9.5.2 下载界面
如下图 9.5.3所示。将下载器一端连接电脑,另一端与开发板上的JTAG下载口相连接,如下图所示。然后连接电源线并打开电源开关。
图 9.5.3 开发板按键
开发板电源打开后,在程序下载界面点击“Hardware Setup”,在弹出的对话框中选择当前的硬件连接为“USB-Blaster”。然后点击“Start”将工程编译完成后得到的sof文件下载到开发板中。
下载完成后,就可以利用按键来控制LED了,如图 9.5.3所示。
以上是关于正点原子FPGA连载第九章按键控制LED灯实验 -摘自正点原子新起点之FPGA开发指南_V2.1的主要内容,如果未能解决你的问题,请参考以下文章