MapReduce基本案例
Posted ·落魄书生·
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce基本案例相关的知识,希望对你有一定的参考价值。
案例1. 单词统计
对文件里的单词进行计数
输入数据
ss ss
cls cls
jiao
banzhang
xue
hadoop
输出数据
banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1
注意:包要导对,有些可能导到java包里
代码:
WordCountMapper.java
package com.lmr.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* KEYIN, map阶段输入的key的类型:LongWritable
* VALUEIN, map阶段输入value的类型:Text
* KEYOUT, map阶段输出的Key类型:Text
* VALUEOUT, map阶段输出的value的类型:InWritable
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行
String line = value.toString();
//2.切割
String[] words = line.split(" ");
//3.循环写出
for (String word : words) {
// 封装outK
outK.set(word);
// 写出
context.write(outK, outV);
// 每个单词都写入
}
}
}
WordCountReducer.java
package com.lmr.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.time.temporal.Temporal;
/**
* KEYIN, reduce阶段输入的key的类型:Text
* VALUEIN, reduce阶段输入value的类型:IntWritable
* KEYOUT, reduce阶段输出的Key类型:Text
* VALUEOUT, reduce阶段输出的value的类型:InWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
//累加
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
//写出
context.write(key, outV);
}
}
驱动函数 WordCountDriver.java
package com.lmr.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
// 1 获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3 关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path("D:\\\\Deskdop\\\\hadoop数据\\\\input\\\\input1"));
FileOutputFormat.setOutputPath(job, new Path("D:\\\\Deskdop\\\\hadoop数据\\\\output\\\\output1"));
// 7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
案例2.序列化重写
对文件里的每一个手机号码(存在相同手机号)上行,下行流量进行统计,统计出总上行流量,总下行流量,总流量(上行加下行)
自定义bean对象实现序列化接口(Writable)在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造
public FlowBean() {
super();
}
(3)重写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
(4)重写反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用"\\t"分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}
输入数据
1 13736230513 192.196.100.1 www.atguigu.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.atguigu.com 1527 2106 200
6 84188413 192.168.100.3 www.atguigu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.atguigu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200
输出数据
13470253144 180 180 360
13509468723 7335 110349 117684
13560439638 918 4938 5856
13568436656 3597 25635 29232
13590439668 1116 954 2070
13630577991 6960 690 7650
13682846555 1938 2910 4848
13729199489 240 0 240
13736230513 2481 24681 27162
13768778790 120 120 240
13846544121 264 0 264
13956435636 132 1512 1644
13966251146 240 0 240
13975057813 11058 48243 59301
13992314666 3008 3720 6728
15043685818 3659 3538 7197
15910133277 3156 2936 6092
15959002129 1938 180 2118
18271575951 1527 2106 3633
18390173782 9531 2412 11943
84188413 4116 1432 5548
重写了一个序列化FlowBean用于输出的类型,
相对于案例1,把输出类型改为自己的,在Driver代码里
把Mapper输出的value类型
job.setMapOutputValueClass(IntWritable.class)
改为
job.setMapOutputValueClass(FlowBean.class),
把最终输出的value类型
job.sebOutputValueClass(IntWritable.class)
改为
job.sebOutputValueClass(FlowBean.class)
还有map代码的输出类型和reduce代码的输入输出类型也要改
为什么要重写序列化?
个人觉得想要自定义最终的输出
代码:
//FlowBean.java
//重写序列化,类型跟IntWritable.class一样,ctrl加鼠标左键点击进去查看继承关系
package com.lmr.mapreduce.writable;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* 1.定义类实现writable接口
* 2.重写序列化和反序列化方法
* 3.重写空参构造
* 4.toString方法
*/
public class FlowBean implements Writable {
private long upFlow; // 上行流量
private long downFlow; // 下行流量
private long sumFlow; // 总流量
//空参构造
public FlowBean() {
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
public void setSumFlow() {
this.sumFlow = this.upFlow + this.downFlow;
}
@Override
public void write(DataOutput output) throws IOException {
output.writeLong(upFlow);
output.writeLong(downFlow);
output.writeLong(sumFlow);
}
@Override
public void readFields(DataInput input) throws IOException {
this.upFlow = input.readLong();
this.downFlow = input.readLong();
this.sumFlow = input.readLong();
}
@Override
public String toString() {
return upFlow + "\\t" + downFlow + "\\t" + sumFlow;
}
}
FlowMapper.java
package com.lmr.mapreduce.writable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
private Text outK = new Text();
private FlowBean outV = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1. 获取一行
String line = value.toString();
// 2. 切割
String[] split = line.split("\\t");
// 3. 抓取想要的数据
String phone = split[1];
String up = split[split.length - 3];
String down = split[split.length - 2];
// 4. 封装
outK.set(phone);
outV.setUpFlow(Long.parseLong(up));
outV.setDownFlow(Long.parseLong(down));
outV.setSumFlow();
//这里把值set进去,在reduce里get出来
// 5. 写出
context.write(outK, outV);
}
}
FlowReducer.java
package com.lmr.mapreduce.writable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
private FlowBean outV = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
// 1. 遍历集合累加值
long totalUp = 0;
long totalDown = 0;
for (FlowBean value : values) {
totalUp += value.getUpFlow();
totalDown += value.getDownFlow();
}
// 2. 封装outK, outV
outV.setUpFlow(totalUp);
outV.setDownFlow(totalDown);
outV.setSumFlow();
// 3. 写出outK outV
context.write(key, outV);
}
}
FlowDriver.java
package com.lmr.mapreduce.writable;
import com.lmr.mapreduce.wordcount.WordCountMapper;
import orgHadoop框架:MapReduce基本原理和入门案例