20个精美图表,教你玩转 Pyecharts 可视化

Posted AI科技大本营

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了20个精美图表,教你玩转 Pyecharts 可视化相关的知识,希望对你有一定的参考价值。

作者 |俊欣

来源 |关于数据分析与可视化

本篇文章我们将继续聚焦c模块并且用它来绘制精美的图表,希望读者在看完之后会有不少收获

01

内嵌饼状图

内接一个环状的饼图,里面还有一个饼状的图

(
    Pie()
    .add(
        series_name="访问来源",
        data_pair=[list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=[0, "30%"],
        label_opts=opts.LabelOpts(position="inner"),
    )
    .add(
        series_name="访问来源",
        radius=["40%", "55%"],
        data_pair=[list(z) for z in zip(Faker.choose(), Faker.values())],
    )
    .set_global_opts(legend_opts=opts.LegendOpts(pos_left="15%", orient="vertical", pos_top="10%"))
    .set_series_opts(
        tooltip_opts=opts.TooltipOpts(
            trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
)
    )
    .render("nested_pies.html")
)

02

环形饼图

c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["50%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-radius示例"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_radius_test.html")
)

03

玫瑰式饼状图

c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["40%", "75%"],
        center=["35%", "50%"],
        rosetype="radius",
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
    .render("pie_rosetype_test.html")
)

04

多个饼状图合集

c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(["古装", "其他"], [35, 65])],
        center=["20%", "30%"],
        radius=[50, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["动作", "其他"], [24, 76])],
        center=["55%", "30%"],
        radius=[50, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["爱情", "其他"], [10, 90])],
        center=["20%", "70%"],
        radius=[50, 80],
        label_opts=new_label_opts(),
    )
    .add(
        "",
        [list(z) for z in zip(["惊悚", "其他"], [20, 80])],
        center=["55%", "70%"],
        radius=[50, 80],
        label_opts=new_label_opts(),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-多饼图基本示例"),
        legend_opts=opts.LegendOpts(
            type_="scroll", pos_top="30%", pos_left="70%", orient="vertical"
        ),
    )
    .render("mutiple_pie.html")
)

05

雷达图

雷达图可以帮助我们查看各个维度之下的数据情况,例如

c = (
    Radar()
    .add_schema(
        schema=[
            opts.RadarIndicatorItem(name="A", max_=8500),
            opts.RadarIndicatorItem(name="B", max_=15000),
            opts.RadarIndicatorItem(name="C", max_=35000),
            opts.RadarIndicatorItem(name="D", max_=38000),
            opts.RadarIndicatorItem(name="E", max_=55000),
            opts.RadarIndicatorItem(name="F", max_=25000),
        ]
    )
    .add("计划设想", v1)
    .add("实际情况", v2)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        legend_opts=opts.LegendOpts(),
        title_opts=opts.TitleOpts(title="雷达图示例"),
    )
    .render("radar_test.html")
)

06

散点图

(
    Scatter()
    .add_xaxis(xaxis_data=Faker.choose())
    .add_yaxis(
        series_name="",
        y_axis=Faker.values(),
        symbol_size=30,
        label_opts=opts.LabelOpts(is_show=True),
    )
    .set_series_opts()
    .set_global_opts(
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
        tooltip_opts=opts.TooltipOpts(is_show=True),
    )
    .render("basic_scatter_chart.html")
)

07

散点图+渐变色

c = (
    Scatter()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values(), symbol_size=30,
               label_opts=opts.LabelOpts(is_show=True),)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="散点图-颜色分段"),
        visualmap_opts=opts.VisualMapOpts(max_=150),
    )
    .render("scatter_visualmap_color_test.html")
)

或者我们根据数据的大小来改变散点的大小

c = (
    Scatter()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="散点图-点状大小不同"),
        visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20),
    )
    .render("scatter_visualmap_size_test.html")
)

08

象形柱状图

c = (
    PictorialBar()
    .add_xaxis(Faker.choose())
    .add_yaxis(
        "",
        Faker.values(),
        label_opts=opts.LabelOpts(is_show=True),
        symbol_size=20,
        symbol_repeat="fixed",
        symbol_offset=[0, 0],
        is_symbol_clip=True,
        symbol=SymbolType.ROUND_RECT,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="象形柱状图示例"),
        xaxis_opts=opts.AxisOpts(is_show=True),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=True),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0)
            ),
        ),
    )
    .render("pictorialbar_test.html")
)

09

K线图+时间轴

c = (
    Kline()
    .add_xaxis(["2021/5/{}".format(i + 1) for i in range(31)])
    .add_yaxis("K线图", data)
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
        ),
        datazoom_opts=[opts.DataZoomOpts()],
        title_opts=opts.TitleOpts(title="k线图+时间轴示例"),
    )
    .render("k线图+时间轴_test.html")
)

当然这个时间轴既可以放在外面也可以放在里面

c = (
    Kline()
    .add_xaxis(["2021/5/{}".format(i + 1) for i in range(31)])
    .add_yaxis("K线图", data)
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(is_scale=True),
        yaxis_opts=opts.AxisOpts(
            is_scale=True,
            splitarea_opts=opts.SplitAreaOpts(
                is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
            ),
        ),
        datazoom_opts=[opts.DataZoomOpts(type_="inside")],
        title_opts=opts.TitleOpts(title="K线图+时间轴示例"),
    )
    .render("K线图+时间轴示例_inside.html")
)

10

区域地图

c = (
    Map()
    .add("商家A", [list(z) for z in zip(["杭州市", "宁波市", "舟山市", "台州市", "温州市", "丽水市",
                                       "金华市", "衢州市", "绍兴市", "湖州市", "嘉兴市"],
                                      Faker.values())], "浙江")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Map浙江地图-Test"), visualmap_opts=opts.VisualMapOpts()
    )
    .render("map_zhejiang.html")
)

11

区域地图+热力图

c = (
    Geo()
    .add_schema(maptype="浙江")
    .add(
        "geo",
        [list(z) for z in zip(["杭州市", "宁波市", "舟山市", "台州市", "温州市", "丽水市",
                               "金华市", "衢州市", "绍兴市", "湖州市", "嘉兴市"], Faker.values())],
        type_=ChartType.HEATMAP,
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=True))
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Geo-浙江地图")
    )
    .render("geo_zhejiang.html")
)

12

地图+颜色分段

c = (
    Map()
    .add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="地图 + 颜色分段(连续型)"),
        visualmap_opts=opts.VisualMapOpts(max_=150),
    )
    .render("map_visual_test.html")
)

13

世界地图

c = (
    Map()
    .add("商家1", [list(z) for z in zip(Faker.country, Faker.values())], "world")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pyecharts-世界地图"),
        visualmap_opts=opts.VisualMapOpts(max_=200),
    )
    .render("map_world_test.html")
)

14

地图+散点图

地图+涟漪散点图的示例

c = (
    Geo()
    .add_schema(maptype="china")
    .add(
        "geo",
        [list(z) for z in zip(Faker.provinces, Faker.values())],
        type_=ChartType.EFFECT_SCATTER,
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="地图+涟漪散点图示例"))
    .render("geo_effectscatter_test.html")
)

15

地图+方向箭头

c = (
    Geo()
    .add_schema(
        maptype="china",
        itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add(
        "",
        [list(z) for z in zip(Faker.provinces, Faker.values())],
        type_=ChartType.EFFECT_SCATTER,
        color="white",
    )
    .add(
        "geo",
        [("宁波", "南京"), ("宁波", "北京"), ("宁波", "兰州"), ("宁波", "拉萨"), ("宁波", "银川"), ("宁波", "武汉")],
        type_=ChartType.LINES,
        effect_opts=opts.EffectOpts(
            symbol=SymbolType.ARROW, symbol_size=6, color="blue"
        ),
        linestyle_opts=opts.LineStyleOpts(curve=0.2),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Geo-Lines-background"))
    .render("geo_lines_background_test.html")
)

16

关系图

nodes = [
    opts.GraphNode(name="结点A", symbol_size=10),
    opts.GraphNode(name="结点B", symbol_size=30),
    opts.GraphNode(name="结点C", symbol_size=20),
    opts.GraphNode(name="结点D", symbol_size=50),
    opts.GraphNode(name="结点E", symbol_size=70),
]
links = [
    opts.GraphLink(source="结点A", target="结点B"),
    opts.GraphLink(source="结点B", target="结点C"),
    opts.GraphLink(source="结点C", target="结点D"),
    opts.GraphLink(source="结点D", target="结点E"),
    opts.GraphLink(source="结点E", target="结点A"),
]
c = (
    Graph()
    .add("", nodes, links, repulsion=2000)
    .set_global_opts(title_opts=opts.TitleOpts(title="关系图"))
    .render("graph_test1.html")
)

17

柱状图+水印

pyecharts还可以给图表增添水印

c = (
    Bar(init_opts=opts.InitOpts(width='900px', height='600px'))
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(
        title_opts=opts.TitleOpts(title=""),
        graphic_opts=graphics_lst,
    )
)
c.render("watermark.html")

18

饼图+时间轴组件

我们可以在饼图下面加一个时间轴,看一下随着时间的变化,各个类目是怎么来变化的

attr = Faker.choose()
tl = Timeline()
for i in range(2015, 2022):
    pie = (
        Pie()
        .add(
            "商家A",
            [list(z) for z in zip(attr, Faker.values())],
            center=["50%", "50%"], radius=["40%", "60%"],
        )
        .set_global_opts(title_opts=opts.TitleOpts("某商店{}年营业额".format(i)))
    )
    tl.add(pie, "{}年".format(i))
tl.render("timeline_pie_test.html")

19

横向柱状图 + 时间轴组件

tl = Timeline()
for i in range(2015, 2022):
    bar = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家1", Faker.values(), label_opts=opts.LabelOpts(position="right"))
        .add_yaxis("商家2", Faker.values(), label_opts=opts.LabelOpts(position="right"))
        .reversal_axis()
        .set_global_opts(
            title_opts=opts.TitleOpts("时间轴 + 横向柱状图 (时间: {} 年)".format(i))
        )
    )
    tl.add(bar, "{}年".format(i))
tl.render("timeline_bar_reversal_test.html")

20

地图 + 时间轴组件

tl = Timeline()
for i in range(2015, 2022):
    map0 = (
        Map()
        .add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
        .set_global_opts(
            title_opts=opts.TitleOpts(title="{}年数据".format(i)),
            visualmap_opts=opts.VisualMapOpts(max_=200),
        )
    )
    tl.add(map0, "{}年".format(i))
tl.render("timeline_map.html")

21

柱状图 + 自定义标识

有时候我们需要将最大、最小值以及平均值标识出来,于是乎

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values())
    .add_yaxis("商家2", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="直方图 + 标识特殊值(指定类型)"))
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
                opts.MarkPointItem(type_="average", name="平均值"),
            ]
        ),
    )
    .render("bar_markpoint_test.html")
)

22

柱状图 + 渐变色

c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家1", Faker.values(), category_gap="50%")
    .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "barBorderRadius": [50, 50, 50, 50],
                "shadowColor": "rgb(0, 160, 221)",
            }
        }
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="圆角直方图-渐变圆柱示例"))
    .render("bar_border_test.html")
)

资讯

以软代硬能否另辟蹊径?

资讯

开箱即用的工业级NLP开发库

资讯

100亿张照片泄露!通过照片监视你

资讯

机器人能帮助缝制T恤吗?

分享

点收藏

点点赞

点在看

以上是关于20个精美图表,教你玩转 Pyecharts 可视化的主要内容,如果未能解决你的问题,请参考以下文章

Python可视化神器:pyecharts,轻松绘制 30+ 种超实用精美图表!

Python入门可视化:22个完整数据可视化小例子,带你玩转可视化~

职场IT老手教你3步教你玩转可视化大屏设计,让领导眼前一亮!

Pyecharts绘制22种超实用精美图表

手把手教你玩转Canvas

大佬教你用 Pyecharts 做出来的交互图表,领导说叼爆了!