week 2——Linear Regression

Posted ^_^|

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了week 2——Linear Regression相关的知识,希望对你有一定的参考价值。

对数据表示做一些规定

x j ( i ) = v a l u e   o f   f e a t u r e   j   i n   t h e   i t h   t r a i n i n g   e x a m p l e x i = t h e   i n p u t   ( f e a t u r e )   o f   t h e   i t h   t r a i n i n g   e x a m p l e m = t h e   n u m b e r   o f   t r a i n i n g   e x a m p l e s n = t h e   n u m b e r   o f   f e a t u r e s x_j^{(i)} = value\\ of\\ feature\\ j\\ in\\ the\\ i^{th}\\ training\\ example \\\\ x^{i} = the\\ input\\ (feature)\\ of\\ the\\ i^{th}\\ training\\ example \\\\ m = the\\ number\\ of\\ training\\ examples \\\\ n = the\\ number\\ of\\ features \\\\ xj(i)=value of feature j in the ith training examplexi=the input (feature) of the ith training examplem=the number of training examplesn=the number of features

预测函数,损失函数表示

h y p o t h e s i s   f u n c t i o n :   h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n hypothesis \\ function:\\ h_{\\theta}(x) = \\theta_0+ \\theta_1x_1+ \\theta_2x_2+\\cdots+ \\theta_nx_n hypothesis function: hθ(x)=θ0+θ1x1+θ2x2++θnxn
c o s t   f u n c t i o n :   J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x i ) − y i ) 2 cost \\ function: \\ J(\\theta) = \\frac{1}{2m}\\sum\\limits_{i=1}^{m}(h_\\theta(x_i)-y_i)^2 cost function: J(θ)=2m1i=1m(hθ(xi)yi)2

梯度下降法

repeat until convergence:{ θ j = θ j − α ∂ J ( θ ) ∂ θ j = θ j − α 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ) \\\\ \\theta_j = \\theta_j - \\alpha\\frac{\\partial J(\\theta)}{\\partial\\theta_j} = \\theta_j - \\alpha\\frac{1}{m}\\sum\\limits_{i=1}^{m}((h_\\theta(x^{(i)}) - y^{(i)})x_j^{(i)}) θj=θjαθjJ(θ)=θjαm1i=1m((hθ(x(i))y(i))xj(i))
}

数据归一化

x − μ σ \\frac{x-\\mu}{\\sigma} σxμ

正规方程法

θ = ( X T X ) − 1 X T y \\theta = (X^TX)^{-1}X^Ty θ=(XTX)1XTy

梯度下降法和正规方程法对比

matlab下演练

假设有数据特征矩阵X为47 × \\times × 2表示47个样本,2个特征。同时y表示结果矩阵,大小为为47 × \\times × 1。 θ \\theta θ 初始化为47 × \\times × 1的全零向量。

  1. 首先,一般会为其增加全1列(即 h ( θ ) = w 0 + x 1 w 1 + x 2 w 2 h(\\theta) = w_0+x_1w_1+x_2w_2 h(θ)=w0+x1w1+x2w2 一般为 w 0 w_0 w0 补充 x 0 x_0 x0 为1)
    X = [ones(m, 1) X];
  2. 归一化
    mu = mean(X);
    sigma = std(X);
    X_norm = (X - mu)./sigma;
  3. 计算损失函数
    J = sum((X* theta - y).^2)/(2*m);
  4. 梯度下降
    for iter = 1:num_iters:
       theta = theta - alpha * (X’((Xtheta) - y)) / m;

非线性化

以上是关于week 2——Linear Regression的主要内容,如果未能解决你的问题,请参考以下文章

机器学习笔记-1 Linear Regression with Multiple Variables(week 2)

机器学习笔记-1 Linear Regression(week 1)

#Week2 Linear Regression with One Variable

斯坦福机器学习视频笔记 Week2 Linear Regression with Multiple Variables

机器学习- 吴恩达Andrew Ng Week6 Regularized Linear Regression and Bias/Variance知识总结

linear regression and logistic regression with pytorch