linux 逆向映射机制浅析
Posted 太初有道,道与神同在,道就是神……
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了linux 逆向映射机制浅析相关的知识,希望对你有一定的参考价值。
2017-05-20
聚会回来一如既往的看了会羽毛球比赛,然后想到前几天和朋友讨论的逆向映射的问题,还是简要总结下,免得以后再忘记了!可是当我添加时间……这就有点尴尬了……520还在写技术博客……
闲话不多说,之前一个问题是想要根据物理页框号得到映射的虚拟地址,一时间不知道如何下手了,在群里和一个朋友讨论了一番,记得之前看swap机制的交换缓存时,记载说系统当要换出一个页面时,可以很容易找到使用该页面的所有进程,然后撤销映射。这一点也就成了我的突破口。经过对源码的一番研究结合相关书籍,便有了今天这篇文章。重点就是逆向映射机制。
顾名思义,有一个虚拟地址经过页面转换得到物理地址的过程为正向映射,那么根据物理地址推导虚拟地址呢?自然成了逆向映射。众所周知,Linux下每个物理页面对应一个page结构,物理页框号可以很容易的转化到page结构,不妨看下内核是怎么转化的。
#define __pfn_to_page(pfn) (mem_map + ((pfn) - ARCH_PFN_OFFSET)) #define __page_to_pfn(page) ((unsigned long)((page) - mem_map)+ ARCH_PFN_OFFSET)
这里有点像windows 的pfn数据库了,mem_map是一个page指针,作为pfn数据库(实际上是一个大的数组的起始),ARCH_PFN_OFFSET是物理起始地址的pfn。所以差值实际就是有效pfn。通过page转化成pfn也是同样的思路。那么这和逆向映射什么关系呢?下面要说的就是至关重要的page结构,该结构比较庞大,我们只说和逆向映射有关系的部分。
page结构中有两个字段:
struct page{ struct address_space *mapping; union { pgoff_t index; /* Our offset within mapping. */ void *freelist; /* slub/slob first free object */ bool pfmemalloc; /* If set by the page allocator, * ALLOC_NO_WATERMARKS was set * and the low watermark was not * met implying that the system * is under some pressure. The * caller should try ensure * this page is only used to * free other pages. */ }; struct { union { /* * Count of ptes mapped in * mms, to show when page is * mapped & limit reverse map * searches. * * Used also for tail pages * refcounting instead of * _count. Tail pages cannot * be mapped and keeping the * tail page _count zero at * all times guarantees * get_page_unless_zero() will * never succeed on tail * pages. */ atomic_t _mapcount; struct { /* SLUB */ unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; int units; /* SLOB */ }; atomic_t _count; /* Usage count, see below. */ }; }; }; }
其实这里想说的就三个字段,mapping,在映射匿名页面的时候指向一个anon_vma结构,在映射文件页面的时候指向inode节点的address-space;index,表示对应的虚拟页面在vma中的线性索引;_mapcount,共享该页面的进程的数目;注意该值默认是-1,当有一个进程使用时为0,所以其值表明除了当前进程还有多少进程在使用,便于撤销。了解了这三个字段,接下来就好解释多了。通过一个函数page_referenced来解释。
int page_referenced(struct page *page, int is_locked,struct mem_cgroup *memcg, unsigned long *vm_flags)
原版解释如下:Quick test_and_clear_referenced for all mappings to a page,returns the number of ptes which referenced the page.就是快速的检查并清除一个页面的所有引用(不同页表当中),返回引用这个page页面的pte数量。简单走一下流程
int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { int referenced = 0; int we_locked = 0; *vm_flags = 0; if (page_mapped(page) && page_rmapping(page)) { if (!is_locked && (!PageAnon(page) || PageKsm(page))) { we_locked = trylock_page(page); if (!we_locked) { referenced++; goto out; } } if (unlikely(PageKsm(page))) referenced += page_referenced_ksm(page, memcg, vm_flags); else if (PageAnon(page)) referenced += page_referenced_anon(page, memcg, vm_flags); else if (page->mapping) referenced += page_referenced_file(page, memcg, vm_flags); if (we_locked) unlock_page(page); if (page_test_and_clear_young(page_to_pfn(page))) referenced++; } out: return referenced; }
首先检查正向和逆向映射是否都存在,如果没有锁定该页面并且页面是KSM 页面或者文件映射页面,则需要trylock,如果加锁失败,则直接out.接下来就是对不同情况的处理。如果是KSM页面走page_referenced_ksm。如果是匿名映射页,走page_referenced_anon,如果是文件映射页,走page_referenced_file。KSM是内核页面共享的一种机制,主要用在KVM中,但是其他地方也可以引用,由于其需要计算页面是否相同,所以在重复率不高的场合,大部分选择关掉KSM,关于KSM在另一篇文章已经介绍。
如果是匿名映射页面,进入page_referenced_anonstatic int page_referenced_anon(struct page *page,struct mem_cgroup *memcg,unsigned long *vm_flags)函数
static int page_referenced_anon(struct page *page, struct mem_cgroup *memcg, unsigned long *vm_flags) { unsigned int mapcount; struct anon_vma *anon_vma; pgoff_t pgoff; struct anon_vma_chain *avc; int referenced = 0; anon_vma = page_lock_anon_vma_read(page); if (!anon_vma) return referenced; mapcount = page_mapcount(page); pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { struct vm_area_struct *vma = avc->vma; unsigned long address = vma_address(page, vma); /* * If we are reclaiming on behalf of a cgroup, skip * counting on behalf of references from different * cgroups */ if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) continue; referenced += page_referenced_one(page, vma, address, &mapcount, vm_flags); if (!mapcount) break; } page_unlock_anon_vma_read(anon_vma); return referenced; }
要撤销映射,肯定要定位到具体的PTE,而PTE只能根据虚拟地址查找页表获得,所以当务之急还是找到虚拟地址和页表。这里首先获得page对应的anon_vma,前面提到,在匿名映射情况下,page->mapping指向anon_vma结构。然后获取了page的共享计数mapcount,获取page对应的虚拟页框在vma中对应的线性索引index,接下来就开始遍历interval-tree了。每个anon_vma_chain关联一个进程的vma,通过vma_address(page, vma)便可以获取在当前vma对应的进程的虚拟地址。暂且忽略cgroup相关的内容。接下来调用page_referenced_one解除映射。前面已经提到,目前已经有了虚拟地址,有了vma,根据vma可以获取对应的mm_struct,进而获取页基址,OK,流程走通了。该函数就不在列举了,函数中有两种情况,如果是大页面(2M页面),需要获得是pmd;如果是普通页面,需要获取pte;之后检查_PAGE_ACCESSED位。如果被设置,则清除,然后++引用计数器,否则,不变。所以经常访问的页面,引用计数器高,就更容易被定义成活跃页面,常驻活跃LRU链表,就不容易被换出。
回顾下最初的问题,通过物理地址找到虚拟地址,在获取了vma和index后,一个函数就解决问题
static inline unsigned long __vma_address(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); if (unlikely(is_vm_hugetlb_page(vma))) pgoff = page->index << huge_page_order(page_hstate(page)); return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); }
代码到这里就不需要多解释了吧,关于anon_vma结构的组织,以后凑空在分析;
感谢主!
参考:
linux 3.10.1源码
《深入linux内核架构》
以上是关于linux 逆向映射机制浅析的主要内容,如果未能解决你的问题,请参考以下文章
Android 逆向类加载器 ClassLoader ( 类加载器源码简介 | BaseDexClassLoader | DexClassLoader | PathClassLoader )(代码片段