实战!《长津湖》为什么这么火爆?我用 Python 来分析猫眼影评

Posted Python学习与数据挖掘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实战!《长津湖》为什么这么火爆?我用 Python 来分析猫眼影评相关的知识,希望对你有一定的参考价值。

作者:周萝卜 链接:长津湖猫眼影评
欢迎关注 ,专注Python、数据分析、数据挖掘、好玩工具!

对于这个十一黄金周的电影市场,绝对是《长津湖》的天下,短短几天,票房就已经突破36亿,大有奋起直追《战狼2》的尽头。而且口碑也是相当的高,猫眼评分高达9.5,绝对的票房口碑双丰收啊

下面我们就通过爬取猫眼的电影评论,进行相关的可视化分析,看看为什么这部电影是如此的受欢迎,最后还进行了简单的票房预测,你一定不能错过哦,欢迎收藏学习,点赞支持,喜欢技术交流的可以文末技术交流群。

数据获取

猫眼评论爬取,还是那么老一套,直接构造 API 接口信息即可

url = "https://m.maoyan.com/mmdb/comments/movie/257706.json?v=yes&offset=30"

payload={}
headers = {
  'Cookie': '_lxsdk_cuid=17c188b300d13-0ecb2e1c54bec6-a7d173c-100200-17c188b300ec8; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1633622378; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; __mta=87266087.1633622378325.1633622378325.1633622378325.1; uuid_n_v=v1; iuuid=ECBA18D0278711EC8B0DFD12EB2962D2C4A641A554EF466B9362A58679FDD6CF; webp=true; ci=55%2C%E5%8D%97%E4%BA%AC; ci=55%2C%E5%8D%97%E4%BA%AC; ci=55%2C%E5%8D%97%E4%BA%AC; featrues=[object Object]; _lxsdk=92E6A4E0278711ECAE4571A477FD49B513FE367C52044EB5A6974451969DD28A; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1633622806',
  'Host': 'm.maoyan.com',
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/94.0.4606.61 Safari/537.36'
}

response = requests.request("GET", url, headers=headers, data=payload)

print(response.json())

这么几行代码,我们就可以得到如下结果

获取到数据后,我们就可以解析返回的 json 数据,并保存到本地了
先写一个保存数据的函数

def save_data_pd(data_name, list_info):
    if not os.path.exists(data_name + r'_data.csv'):
        # 表头
        name = ["comment_id","approve","reply","comment_time","sureViewed","nickName",
                "gender","cityName","userLevel","user_id","score","content"]
        # 建立DataFrame对象
        file_test = pd.DataFrame(columns=name, data=list_info)
        # 数据写入
        file_test.to_csv(data_name + r'_data.csv', encoding='utf-8', index=False)
    else:
        with open(data_name + r'_data.csv', 'a+', newline='', encoding='utf-8') as file_test:
            # 追加到文件后面
            writer = csv.writer(file_test)
            # 写入文件
            writer.writerows(list_info)

直接通过 Pandas 来保存数据,可以省去很多数据处理的事情

接下来编写解析 json 数据的函数

def get_data(json_comment):
    list_info = []
    for data in json_comment:
        approve = data["approve"]
        comment_id = data["id"]
        cityName = data["cityName"]
        content = data["content"]
        reply = data["reply"]
        # 性别:1男,2女,0未知
        if "gender" in data:
            gender = data["gender"]
        else:
            gender = 0
        nickName = data["nickName"]
        userLevel = data["userLevel"]
        score = data["score"]
        comment_time = data["startTime"]
        sureViewed = data["sureViewed"]
        user_id = data["userId"]
        list_one = [comment_id, approve, reply,  comment_time, sureViewed, nickName, gender, cityName, userLevel, 
                    user_id, score, content]
        list_info.append(list_one)
    save_data_pd("maoyan", list_info)

我们把几个主要的信息提取出来,比如用户的 nickname,评论时间,所在城市等等

最后把上面的代码整合,并构造爬取的 url 即可

def fire():
    tmp = "https://m.maoyan.com/mmdb/comments/movie/257706.json?v=yes&offset="

    payload={}
    headers = {
      'Cookie': '_lxsdk_cuid=17c188b300d13-0ecb2e1c54bec6-a7d173c-100200-17c188b300ec8; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1633622378; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; __mta=87266087.1633622378325.1633622378325.1633622378325.1; uuid_n_v=v1; iuuid=ECBA18D0278711EC8B0DFD12EB2962D2C4A641A554EF466B9362A58679FDD6CF; webp=true; ci=55%2C%E5%8D%97%E4%BA%AC; ci=55%2C%E5%8D%97%E4%BA%AC; ci=55%2C%E5%8D%97%E4%BA%AC; featrues=[object Object]; _lxsdk=92E6A4E0278711ECAE4571A477FD49B513FE367C52044EB5A6974451969DD28A; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1633622806',
      'Host': 'm.maoyan.com',
      'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'
    }
    for i in range(0, 3000, 15):
        url = tmp + str(i)
        print(url)
        response = requests.request("GET", url, headers=headers, data=payload)
        comment = response.json()
        if not comment.get("hcmts"):
            break
        hcmts = comment['hcmts']
        get_data(hcmts)
        cmts = comment['cmts']
        get_data(cmts)
        time.sleep(10)

爬取过程如下

保存到本地的数据如下

下面我们就可以进行相关的可视化分析了

可视化分析

1 数据清洗

我们首先根据 comment_id 来去除重复数据

df_new = df.drop_duplicates(['comment_id'])

对于评论内容,我们进行去除非中文的操作

def filter_str(desstr,restr=''):
    #过滤除中文以外的其他字符
    res = re.compile("[^\\u4e00-\\u9fa5^,^,^.^。^【^】^(^)^(^)^“^”^-^!^!^?^?^]")
    # print(desstr)
    res.sub(restr, desstr)

2 评论点赞及回复榜

我们先来看看哪些评论是被点赞最多的

approve_sort = df_new.sort_values(by=['approve'], ascending=False)

approve_sort = df_new.sort_values(by=['approve'], ascending=False)
x_data = approve_sort['nickName'].values.tolist()[:10]
y_data = approve_sort['approve'].values.tolist()[:10]

b = (Bar()
     .add_xaxis(x_data)
     .add_yaxis('',y_data)
     .set_global_opts(title_opts = opts.TitleOpts(title='评论点赞前十名'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
     .reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()


可以看到位于榜首的是一个叫“琦寶”的观众写的评论,点赞量高达86027

再来看看评论回复的情况

reply_sort = df_new.sort_values(by=['reply'], ascending=False)
x_data = reply_sort['nickName'].values.tolist()[:10]
y_data = reply_sort['reply'].values.tolist()[:10]

b = (Bar()
     .add_xaxis(x_data)
     .add_yaxis('',y_data)
     .set_global_opts(title_opts = opts.TitleOpts(title='评论回复前十名'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
     .reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

回复量最高的同样是“琦寶”的评论,很好奇,他到底写了什么呢,快来看看

df_new[df_new['nickName'].str.contains('琦寶')]['content'].values.tolist()[0]

Output:

'印象中第一次一大家子一起来看电影,姥爷就是志愿军,他一辈子没进过电影院,开始还担心会不会不适应,感谢影院工作人员的照顾,
姥爷全程非常投入,我坐在旁边看到他偷偷抹了好几次眼泪,刚才我问电影咋样,一直念叨“好,好哇,我们那时候就是那样的,就是那样的……”\\n忽然觉得历史长河与我竟如此之近,刚刚的三个小时我看到的是遥远的70年前、是教科书里的战争,更是姥爷的19岁,是真真切切的、他的青春年代!'

还真的是非常走心的评论,而且自己的家人就有经历过长津湖战役的经历,那么在影院观影的时候,肯定会有不一样的感受!

当然我们还可以爬取每条评论的reply信息,通过如下接口

https://i.maoyan.com/apollo/apolloapi/mmdb/replies/comment/1144027754.json?v=yes&offset=0

只需要替换 json 文件名称为对应的 comment_id 即可,这里就不再详细介绍了,感兴趣的朋友自行探索呀

下面我们来看一下整体评论数据的情况

3 各城市排行

来看看哪些城市的评论最多呢

result = df_new['cityName'].value_counts()[:10].sort_values()
x_data = result.index.tolist()
y_data = result.values.tolist()

b = (Bar()
     .add_xaxis(x_data)
     .add_yaxis('',y_data)
     .set_global_opts(title_opts = opts.TitleOpts(title='评论城市前十'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
     .reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

一线大城市纷纷上榜,看来这些城市的爱国主义教育做的还是要好很多呀

再来看看城市的全国地图分布

result = df_new['cityName'].value_counts().sort_values()
x_data = result.index.tolist()
y_data = result.values.tolist()
city_list = [list(z) for z in zip(x_data, y_data)]

可以看到,这个评论城市的分布,也是与我国总体经济的发展情况相吻合的

4 性别分布

再来看看此类电影,对什么性别的观众更具有吸引力

attr = ["其他","男","女"]

b = (Pie()
     .add("", [list(z) for z in zip(attr, df_new.groupby("gender").gender.count().values.tolist())])
     .set_global_opts(title_opts = opts.TitleOpts(title='性别分布'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

在填写了性别的数据当中,女性竟然多一些,这还是比较出乎意料的

5 是否观看

猫眼是可以在没有观看电影的情况下进行评论的,我们来看看这个数据的情况

result = df_new["sureViewed"].value_counts()[:10].sort_values().tolist()
b = (Pie()
     .add("", [list(z) for z in zip(["未看过", "看过"], result)])
     .set_global_opts(title_opts = opts.TitleOpts(title='是否观看过'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

大部分人都是在观看了之后才评论的,这要在一定程度上保证了评论和打分的可靠性

6 评分分布

猫眼页面上是10分制,但是在接口当中是5分制

result = df_new["score"].value_counts().sort_values()
x_data = result.index.tolist()
y_data = result.values.tolist()

b = (Bar()
     .add_xaxis(x_data)
     .add_yaxis('',y_data)
     .set_global_opts(title_opts = opts.TitleOpts(title='评分分布'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
     .reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

可以看到5-4.5评论占据了大部分,口碑是真的好啊

7 评论时间分布

对于评论时间,我这里直接使用了原生的 echarts 来作图

from collections import Counter 
result = df_new["comment_time"].values.tolist()
result = [i.split()[1].split(":")[0] + "点" for i in result]
result_dict = dict(Counter(result))
result_list = []
for k,v in result_dict.items():
    tmp = {}
    tmp['name'] = k
    tmp['value'] = v
    result_list.append(tmp)

children_dict = {"children": result_list}

示例地址:https://echarts.apache.org/examples/zh/editor.html?c=treemap-sunburst-transition

能够看出,在晚上的19点和20点,都是大家写评论的高峰期,一天的繁忙结束后,写个影评放松下

8 每天评论分布

接下来是每天的评论分布情况

result = df_new["comment_time"].values.tolist()
result = [i.split()[0] for i in result]
result_dict = dict(Counter(result))
b = (Pie()
     .add("", [list(z) for z in zip(result_dict.keys(), result_dict.values())])
     .set_global_opts(title_opts = opts.TitleOpts(title='每天评论数量'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

就目前来看,几乎所有的评论都集中在10月8号,难道是上班第一天,不想上班,只想摸鱼?😂

9 用户等级分布

来看下猫眼评论用户的等级情况,虽然不知道这个等级有啥用😀

result = df_new['userLevel'].value_counts()[:10].sort_values()
x_data = result.index.tolist()
y_data = result.values.tolist()

b = (Bar()
     .add_xaxis(x_data)
     .add_yaxis('',y_data)
     .set_global_opts(title_opts = opts.TitleOpts(title='用户等级'))
     .set_series_opts(label_opts=opts.LabelOpts(is_show=True,position='right'))
     .reversal_axis()
)
grid = Grid(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
grid.add(b, grid_opts=opts.GridOpts(pos_left="20%"))
grid.render_notebook()

大家基本都是 level2,哈哈哈哈,普罗大众嘛

10 主创提及次数

我们再来看看在评论中,各位主创被提及的次数情况

name = ["吴京",
"易烊千玺",
"段奕宏",
"朱亚文",
"李晨",
"胡军",
"王宁",
"刘劲",
"卢奇",
"曹阳",
"李军",
"孙毅",
"易",
"易烊",
"千玺"
]
def actor(data, name):
    counts = {}
    comment = jieba.cut(str(data), cut_all=False)
    # 去停用词
    for word in comment:
        if word in name:
            if word == "易"以上是关于实战!《长津湖》为什么这么火爆?我用 Python 来分析猫眼影评的主要内容,如果未能解决你的问题,请参考以下文章

直播:如何通过 ELK 实战实现《长津湖》影评可视化?

为什么抖音张同学这么火爆?用 Python 分析 1w+条评论数据,我发现了其中的秘密

国庆看了长津湖 | 坚韧的毅力让我拿到了薪资18.5K,人生就像马拉松,坚持到最后,就是胜利者

精选100个Python实战项目案例,送给缺乏实战经验的你

[所思所想]观《长津湖》有感

快50亿了!用Python分析长津湖到底好看在哪里